
z/OS

TSO/E

Command Reference

SA22-7782-09

���

z/OS

TSO/E

Command Reference

SA22-7782-09

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

407.

Tenth Edition, September 2007

This edition applies to Version 1, Release 9 of z/OS (5694-A01) and to all subsequent releases and modifications

until otherwise indicated in new editions.

This is a major revision of SA22-7782-08.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 MHVRCFS, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About this document . xi

Who should use this document xi

How this document is organized xi

Where to find more information xi

Summary of changes . xiii

Chapter 1. TSO/E commands and subcommands 1

Using a TSO/E command . 9

How to read the TSO/E command syntax 10

Using the HELP command . 14

Using commands for VSAM and Non-VSAM data sets 14

TSO/E commands and subcommands 15

Summary of TSO/E commands 15

ALLOCATE command . 17

ALTLIB command . 55

ATTRIB command . 62

CALL command . 70

CANCEL command . 74

DELETE command . 75

EDIT command . 79

END command . 130

EXEC command . 130

EXECUTIL command . 142

FREE command . 149

HELP command . 154

LINK command . 158

LISTALC command . 171

LISTBC command . 174

LISTCAT command . 176

LISTDS command . 180

LOADGO command . 182

LOGOFF command . 190

LOGON command . 191

MVSSERV command . 196

OUTDES command . 197

OUTPUT command . 211

OUTPUT subcommands (overview) 217

OUTPUT—CONTINUE subcommand 217

OUTPUT—END subcommand 218

OUTPUT—HELP subcommand 218

OUTPUT—SAVE subcommand 219

PRINTDS command . 219

PROFILE command . 234

PROTECT command . 241

RECEIVE command . 245

RENAME command . 256

RUN command . 257

SEND command . 261

© Copyright IBM Corp. 1988, 2007 iii

SMCOPY command . 266

SMFIND command . 269

SMPUT command . 271

STATUS command . 272

SUBMIT command . 273

TERMINAL command . 277

TEST command . 282

TEST subcommands (overview) 287

TEST—ALLOCATE command 289

TEST—AND subcommand . 289

Assignment of values function of TEST 291

TEST—AT subcommand . 296

TEST—ATTRIB command . 300

TEST—CALL subcommand . 300

TEST—CANCEL command . 302

TEST—COPY subcommand 302

TEST—DELETE subcommand 305

TEST—DROP subcommand 305

TEST—END subcommand . 306

TEST—EQUATE subcommand 307

TEST—EXEC command . 309

TEST—FREEMAIN subcommand 309

TEST—GETMAIN subcommand 310

TEST—GO subcommand . 311

TEST—HELP command . 313

TEST—LINK command . 313

TEST—LIST subcommand . 313

TEST—LISTALC command . 319

TEST—LISTBC command . 319

TEST—LISTCAT command . 319

TEST—LISTDCB subcommand 319

TEST—LISTDEB subcommand 321

TEST—LISTDS command . 322

TEST—LISTMAP subcommand 323

TEST—LISTPSW subcommand 324

TEST—LISTTCB subcommand 325

TEST—LISTVP subcommand 327

TEST—LISTVSR subcommand 327

TEST—LOAD subcommand 328

TEST—OFF subcommand . 329

TEST—OR subcommand . 331

TEST—PROFILE command 333

TEST—PROTECT command 333

TEST—QUALIFY subcommand 334

TEST—RENAME command 336

TEST—RUN subcommand . 336

TEST—SEND command . 337

TEST—SETVSR subcommand 338

TEST—STATUS command . 338

TEST—SUBMIT command . 339

TEST—TERMINAL command 339

TEST—UNALLOC command 339

TEST—WHERE subcommand 339

TIME command . 341

TRANSMIT command . 342

TSOEXEC command . 356

iv z/OS V1R9.0 TSO/E Command Reference

TSOLIB command . 357

VLFNOTE command . 366

WHEN command . 369

Chapter 2. Session Manager commands 371

Entering Session Manager commands 371

Command format . 372

Session Manager Command syntax 373

Defaults . 373

Abbreviations . 373

Session Manager Command summary 373

CHANGE.CURSOR command 375

Appendix. Accessibility . 405

Using assistive technologies 405

Keyboard navigation of the user interface 405

z/OS information . 405

Notices . 407

Trademarks . 409

Bibliography . 411

TSO/E Publications . 411

Related Publications . 411

Index . 413

Contents v

vi z/OS V1R9.0 TSO/E Command Reference

Figures

1. Allocating and creating input data sets in the background 70

2. Information available through the HELP command 155

© Copyright IBM Corp. 1988, 2007 vii

viii z/OS V1R9.0 TSO/E Command Reference

Tables

 1. Commands preferred for VSAM/Non-VSAM data sets 14

 2. Summary of the TSO/E commands . 15

 3. ALLOCATE command return codes . 49

 4. Library search order . 55

 5. ALTLIB command return codes . 61

 6. ATTRIB command return codes . 69

 7. CALL command return codes . 72

 8. CANCEL Command Return Codes . 75

 9. DELETE Command Return Codes . 78

10. EDIT command: default values for LINE or LRECL and BLOCK or BLKSIZE operands 86

11. EDIT command return codes . 86

12. Subcommands and functions of the EDIT command 88

13. Default tab settings . 126

14. Library search order . 137

15. EXEC command return codes . 139

16. EXECUTIL command return codes . 148

17. FREE command return codes . 152

18. HELP command return codes . 157

19. LINK command return codes . 170

20. LISTALC command return codes . 172

21. LISTBC command return codes . 175

22. LISTBC command return codes (installation-defined user log data set) 175

23. LISTCAT command return codes . 180

24. LISTDS command return codes . 182

25. LOADGO command return codes . 189

26. MVSSERV command return codes . 197

27. OUTDES command return codes . 209

28. OUTPUT command return codes . 216

29. Subcommands and functions of the OUTPUT command 217

30. Valid machine printer carriage control characters 224

31. Summary of default values for the PRINTDS command 231

32. Mutually exclusive operands on the PRINTDS command 232

33. PRINTDS command return codes . 233

34. System defaults for control characters . 235

35. UPT/PSCB initialization table in the background 239

36. PROFILE command return codes . 240

37. PROTECT command return codes . 244

38. RECEIVE command return codes . 251

39. Combinations of source and target data sets . 252

40. RENAME command return codes . 257

41. Source statement/licensed program relationship 257

42. RUN command return codes . 261

43. SEND command return codes . 265

44. SEND command return codes (installation-defined user log data set) 265

45. SMCOPY command return codes . 269

46. SMFIND command return codes . 271

47. SMPUT command return codes . 272

48. STATUS command return codes . 273

49. SUBMIT command return codes . 277

50. TERMINAL command return codes . 281

51. TEST Command return codes . 285

52. Subcommands and functions of the TEST command 287

53. TRANSMIT command return codes . 347

© Copyright IBM Corp. 1988, 2007 ix

54. TSOEXEC command return codes . 357

55. TSOLIB command return codes . 363

56. VLFNOTE command return codes . 369

57. Summary of the Session Manager commands 373

58. CHANGE.CURSOR command return codes . 376

59. CHANGE.FUNCTION command return codes . 378

60. CHANGE.MODE command return codes . 379

61. CHANGE.PFK command return codes . 381

62. CHANGE.STREAM command return codes . 382

63. CHANGE.TERMINAL command return codes . 383

64. CHANGE.WINDOW command return codes . 385

65. DEFINE.WINDOW command return codes . 388

66. DELETE.WINDOW command return codes . 389

67. FIND command return codes . 391

68. PUT command return codes . 392

69. QUERY command return codes . 394

70. RESET command return codes . 396

71. RESTORE command return codes . 397

72. SAVE command return codes . 398

73. SCROLL command return codes . 401

74. SHAPSHOT command return codes . 402

75. UNLOCK command return codes . 403

x z/OS V1R9.0 TSO/E Command Reference

About this document

This document supports z/OS (5694–A01).

This document describes the syntax and function of the commands and

subcommands of the TSO/E command language and Session Manager. It provides

only reference material and assumes you are experienced in the use of TSO/E and

Session Manager.

If you are not familiar with TSO/E, first read z/OS TSO/E User’s Guide. If you have

little or no knowledge of the use of TSO/E commands, z/OS TSO/E User’s Guide,

provides the prerequisite information for using this document. The guide explains

how to:

v Enter and execute commands

v Name and create specific types of data sets

v Edit, rename, list, copy, free, and delete data sets

v Send and receive data sets

v Print data sets on a JES printer

v Run programs in the foreground or background

v Use TSO/E through ISPF/PDF

v Use Session Manager

Notes:

1. System programming commands are described in z/OS TSO/E System

Programming Command Reference.

2. When you see the term JESPLEX in this publication, understand it to mean

either a logical grouping of JES2 systems that share the same multi-access

spool (MAS) or a logical grouping of JES3 systems (each JES3 system

consisting of one global JES3 system and some number of local JES3

systems).

Who should use this document

Anyone who uses TSO/E and Session Manager commands.

How this document is organized

The major chapters in this document are:

v Chapter 1, “TSO/E commands and subcommands,” on page 1 contains general

information needed to use TSO/E commands. It describes the syntax notation in

diagrams that accompany each command, positional and keyword operands,

delimiters, line continuation, comments, and subcommands.

This document presents commands in alphabetical order. The subcommands are

alphabetized under their commands. For example, all TEST subcommands are

alphabetized under the TEST command. Examples are included.

v Chapter 2, “Session Manager commands,” on page 371 describes the syntax and

function of each Session Manager command. It presents the commands in

alphabetical order and includes examples.

Where to find more information

See z/OS Information Roadmap for an overview of the documentation associated

with z/OS®, including the documentation available for z/OS TSO/E.

© Copyright IBM Corp. 1988, 2007 xi

Introductory information about how to use TSO/E is described in z/OS TSO/E

User’s Guide.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM®

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, z/VSE™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to

access IBM message explanations using LookAt from a TSO/E command line

(for example: TSO/E prompt, ISPF, or z/OS UNIX® System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

xii z/OS V1R9.0 TSO/E Command Reference

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

Summary of changes

Summary of changes

for SA22-7782-09

z/OS Version 1 Release 9

 This book contains information previously presented in z/OS TSO/E Command

Reference, SA22-7782-08, which supports z/OS Version 1 Release 8.

Changed Information

v The syntax diagram of the TRANSMIT command has been updated. See

“TRANSMIT command syntax” on page 342.

v The syntax diagram of the LINK command has been updated. See “LINK

command syntax” on page 158.

v The following operands have been changed for the “ALLOCATE command” on

page 17:

– SPACE operand on page 27

– AVBLOCK operand on page 28

– TRACKS operand on page 28

– CYLINDERS operand on page 28

– AVGREC operand on page 28

– Requirements of the RECFM(F) operand on page 29

– PARALLEL operand on page 31

– ACCODE operand on page 31

– SECMODEL operand on page 34

– The expiration date form 1 on page 36 of the EXPDT operand

– MODIFY operand on page 41

v The ATTRIB command, definition of the TRTCH operand on page 68 has been

updated.

v The FREE command, definition of the SYSOUT operand on page 151 has been

indented.

v The LINK command, definition of the LOAD operand on page 160 has been

updated.

v The OUTDES command, definition of the MODIFY operand on page 204 has

been updated.

v Under “Further considerations” on page 359 for the TSOLIB command, the

section on authorized commands and programs on page 359 has been updated.

v The PRINTDS command, definition of the MODIFY operand on page 228 and

WRITER operand on page 231 have been updated.

v Under “TRANSMIT command operands” on page 343, the definition of the

OUTDDNAME operand on page 347 and the definition of the OUTDSNAME

operand on page 347 have been updated.

v For the LINK and LOADGO commands, a note under the LISTPRIV parameter

on page 169 and page 189 has been updated.

New Information

v The parameters, LISTPRIV, INFO, NOINFO and MODMAP have been added to

the LINK command syntax diagram “LINK command” on page 158.

v A new parameter, INFO | NOINFO, has been added on page 169.

© Copyright IBM Corp. 1988, 2007 xiii

v A new parameter, MODMAP, has been added on page 169.

v A new release has been added to the COMPAT parameter on page 163.

v New operands, WARN | NOWARN, have been added under the TRANSMIT

command on page 347.

v A new option, INTERNAL, has been added under the CN parameter of the SEND

command on page 263.

This document has been enabled for the following types of advanced searches in

the online z/OS Library Center: commands.

This book contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You may notice changes in the style and structure of some content in this book—for

example, headings that use uppercase for the first letter of initial words only, and

procedures that have a different look and format. The changes are ongoing

improvements to the consistency and retrievability of information in our books.

Summary of changes

for SA22-7782-08

z/OS Version 1 Release 8

 This book contains information previously presented in z/OS TSO/E Command

Reference, SA22-7782-07, which supports z/OS Version 1 Release 7.

New Information

v A new operand, VARSTORAGE, was added to the PROFILE command on page

238.

v A new operand, PM5, was added to the LINK command on page 162.

v A new option, release, was added to the operand LKED under the LINK

command on page 163.

Changed Information

v The operator under the SEND command on page 261 has been changed.

v The syntax of CN on page 263 has been changed.

v The “LINK command syntax” on page 158 has been changed.

v The definition of operand PM4, PM3, and PM1 under the LINK command on

page 162 has been changed.

v The operator under the LINK command on page 166 has been changed.

v The “PROFILE command syntax” on page 235 has been changed.

This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

Summary of changes

for SA22-7782-07

z/OS Version 1 Release 7

 This book contains information previously presented in z/OS TSO/E Command

Reference, SA22-7782-06, which supports z/OS Version 1 Release 6.

New Information

xiv z/OS V1R9.0 TSO/E Command Reference

Information was added for large format sequential data set support in:

v “DSNTYPE keyword” on page 43 contains new data set values for the DSNTYPE

keyword.

Information was added for data compression support in:

“LINK command operands” on page 160 and “LOADGO command operands” on

page 184 contains new operands.

Changed Information

v Updated “DSNTYPE syntax” on page 22 with new values for the DSNTYPE

keyword.

v “PATH operand” on page 44 has been updated for the ALLOCATE command.

This document contains terminology, maintenance, and editorial changes, including

changes to improve consistency and retrievability.

Summary of changes xv

xvi z/OS V1R9.0 TSO/E Command Reference

Chapter 1. TSO/E commands and subcommands

Using a TSO/E command . 9

Positional operands . 9

Keyword operands . 9

How to read the TSO/E command syntax 10

Abbreviating keyword operands 12

Comments . 12

Line continuation . 13

Delimiters . 13

Using the HELP command . 14

Explanations of commands 14

Syntax interpretation of HELP information 14

Explanations of subcommands 14

Using commands for VSAM and Non-VSAM data sets 14

TSO/E commands and subcommands 15

Summary of TSO/E commands 15

ALLOCATE command . 17

Data sets with SMS . 17

Allocating non-SMS-managed data sets 18

Allocating z/OS UNIX data sets 19

ALLOCATE command syntax 19

ALLOCATE command operands 22

ALLOCATE command return codes 49

ALLOCATE command examples 49

ALTLIB command . 55

Search order for libraries . 55

Using ALTLIB with most applications 56

Using ALTLIB with concurrent applications 56

Using ALTLIB in ISPF . 56

Using ALTLIB in the IPCS dialog 57

Stacking Application-Level library requests 57

ALTLIB command syntax . 58

ALTLIB command operands 59

ALTLIB command return codes 61

ALTLIB command examples 61

ATTRIB command . 62

ATTRIB command syntax . 62

ATTRIB command operands 63

ATTRIB command return codes 69

ATTRIB command examples 69

CALL command . 70

CALL command in the background 70

CALL command syntax . 71

CALL command operands . 71

CALL command return codes 72

CALL command examples . 72

CANCEL command . 74

CANCEL command syntax 74

CANCEL command operands 74

CANCEL command return codes 75

CANCEL command examples 75

DELETE command . 75

DELETE command syntax . 76

DELETE command operands 77

© Copyright IBM Corp. 1988, 2007 1

DELETE command return codes 78

DELETE command example 79

EDIT command . 79

EDIT command syntax . 80

EDIT command operands . 81

EDIT command return codes 86

EDIT command examples . 86

EDIT subcommands (overview) 87

EDIT—ALLOCATE subcommand 88

EDIT—ATTRIB subcommand 88

EDIT—BOTTOM subcommand 88

EDIT—CHANGE subcommand 89

EDIT—CKPOINT subcommand 93

EDIT—COPY subcommand 94

EDIT—DELETE subcommand 100

EDIT—DOWN subcommand 102

EDIT—END subcommand 102

EDIT—EXEC subcommand 103

EDIT—FIND subcommand 103

EDIT—FREE subcommand 104

EDIT—HELP subcommand 104

EDIT—INPUT subcommand 104

EDIT—INSERT subcommand 106

EDIT—insert/replace/delete function 107

EDIT—LIST subcommand 109

EDIT—MOVE subcommand 110

EDIT—PROFILE subcommand 115

EDIT—RENUM subcommand 115

EDIT—RUN subcommand 117

EDIT—SAVE subcommand 119

EDIT—SCAN subcommand 121

EDIT—SEND subcommand 123

EDIT—SUBMIT subcommand 123

EDIT—TABSET subcommand 126

EDIT—TOP subcommand 128

EDIT—UNNUM subcommand 128

EDIT—UP subcommand . 128

EDIT—VERIFY subcommand 129

END command . 130

END command syntax . 130

END command return code 130

EXEC command . 130

Using EXEC as a subcommand 130

EXEC command syntax . 131

EXEC command operands 132

Using the explicit form of the EXEC command 135

Using the (extended) implicit form of the EXEC command 137

Considerations for passing quotation marks 138

EXEC command return codes 139

EXEC command examples 139

EXECUTIL command . 142

Additional considerations for using EXECUTIL 143

EXECUTIL command syntax 143

EXECUTIL command operands 143

EXECUTIL command return codes 148

EXECUTIL command examples 148

2 z/OS V1R9.0 TSO/E Command Reference

FREE command . 149

FREE command syntax . 149

FREE command operands 150

FREE command return codes 152

FREE command examples 153

HELP command . 154

Information available through HELP 154

HELP command syntax . 156

HELP command operands 156

HELP command return codes 157

HELP command examples 157

LINK command . 158

LINK command syntax . 158

LINK command operands 160

LINK command return codes 170

LINK command examples 170

LISTALC command . 171

LISTALC command syntax 171

LISTALC command operands 171

LISTALC command return codes 172

LISTALC command examples 172

LISTBC command . 174

LISTBC command syntax 175

LISTBC command operands 175

LISTBC command return codes 175

LISTBC command examples 176

LISTCAT command . 176

LISTCAT command syntax 176

LISTCAT command operands 177

LISTCAT command return codes 180

LISTDS command . 180

LISTDS command syntax 181

LISTDS command operands 181

LISTDS command return codes 182

LISTDS command examples 182

LOADGO command . 182

LOADGO command syntax 183

LOADGO command operands 184

LOADGO command return codes 189

LOADGO command examples 190

LOGOFF command . 190

LOGOFF command syntax 191

LOGOFF command operands 191

LOGOFF command examples 191

LOGON command . 191

Full-Screen LOGON versus line mode LOGON 191

Full-Screen LOGON processing 192

LOGON command syntax 193

LOGON command operands 193

LOGON command examples 195

MVSSERV command . 196

MVSSERV command syntax 196

MVSSERV command operands 196

MVSSERV command return codes 197

MVSSERV command examples 197

OUTDES command . 197

Chapter 1. TSO/E commands and subcommands 3

OUTDES command syntax 197

OUTDES command operands 199

Coding rules . 209

OUTDES command return codes 209

OUTDES command examples 209

OUTPUT command . 211

OUTPUT command syntax 212

OUTPUT command operands 212

Output sequence . 214

Subcommands for the OUTPUT command 215

Checkpointed data set . 216

OUTPUT command return codes 216

OUTPUT command examples 216

OUTPUT subcommands (overview) 217

OUTPUT—CONTINUE subcommand 217

OUTPUT—CONTINUE subcommand syntax 217

OUTPUT—CONTINUE subcommand operands 217

OUTPUT—CONTINUE subcommand examples 218

OUTPUT—END subcommand 218

OUTPUT—END subcommand syntax 218

OUTPUT—HELP subcommand 218

OUTPUT—SAVE subcommand 219

OUTPUT—SAVE subcommand syntax 219

OUTPUT—SAVE subcommand operand 219

OUTPUT—SAVE subcommand examples 219

PRINTDS command . 219

Process for the input data set or file 220

Output for a data set or file 220

PRINTDS command syntax 220

PRINTDS command operands 222

Default values for PRINTDS 231

Mutually exclusive operands on PRINTDS 232

PRINTDS command return codes 233

PRINTDS command examples 233

PROFILE command . 234

PROFILE command syntax 235

PROFILE command operands 235

PROFILE language setting notes 239

PROFILE foreground/background processing differences 239

PROFILE command return codes 240

PROFILE command examples 240

PROTECT command . 241

PROTECT command syntax 242

PROTECT command operands 242

Passwords . 243

Types of access . 243

Password data set . 244

PROTECT command return codes 244

PROTECT command examples 244

RECEIVE command . 245

RECEIVE command syntax 246

RECEIVE command operands 246

RECEIVE command prompt parameters 247

RECEIVE command prompt parameter syntax 248

RECEIVE command prompt parameters 248

RECEIVE command return codes 251

4 z/OS V1R9.0 TSO/E Command Reference

Receiving data . 251

Data set organization . 251

Receiving PDSE data sets 252

Receiving protected data sets 252

Receiving enciphered data 253

Receiving data sets and messages with security labels 253

RECEIVE command examples 253

RENAME command . 256

RENAME command syntax 256

RENAME command operands 256

RENAME command return codes 257

RENAME command examples 257

RUN command . 257

RUN command syntax . 257

RUN command operands 259

Determining compiler type 261

RUN command return codes 261

RUN command examples 261

SEND command . 261

SEND command syntax . 263

SEND command operands 263

SEND command return codes 265

SEND command examples 265

SMCOPY command . 266

SMCOPY command syntax 266

SMCOPY command operands 267

SMCOPY command return codes 269

SMCOPY command examples 269

SMFIND command . 269

SMFIND command syntax 269

SMFIND command operands 270

SMFIND command return codes 271

SMFIND command examples 271

SMPUT command . 271

SMPUT command syntax 271

SMPUT command operands 271

SMPUT command return codes 272

SMPUT command examples 272

STATUS command . 272

STATUS command syntax 272

STATUS command operand 272

STATUS command return codes 273

SUBMIT command . 273

SUBMIT command syntax 274

SUBMIT command operands 274

SUBMIT command return codes 277

SUBMIT command examples 277

TERMINAL command . 277

TERMINAL command syntax 278

TERMINAL command operands 278

TERMINAL command return codes 281

TERMINAL command examples 281

TEST command . 282

TEST command syntax . 283

TEST command operands 283

TEST command return codes 285

Chapter 1. TSO/E commands and subcommands 5

TEST command examples 285

TEST subcommands (overview) 287

TEST—ALLOCATE command 289

TEST—AND subcommand . 289

TEST—AND subcommand syntax 289

TEST—AND subcommand operands 289

TEST—AND subcommand examples 291

Assignment of values function of TEST 291

Syntax of values function of TEST 292

Operands of values function of TEST 292

Examples of values function of TEST 294

TEST—AT subcommand . 296

TEST—AT subcommand syntax 297

TEST—AT subcommand operands 297

TEST—AT subcommand examples 298

TEST—ATTRIB command . 300

TEST—CALL subcommand . 300

TEST—CALL subcommand syntax 300

TEST—CALL subcommand operands 300

TEST—CALL subcommand examples 301

TEST—CANCEL command . 302

TEST—COPY subcommand 302

TEST—COPY subcommand syntax 302

TEST—COPY subcommand operands 302

TEST—COPY subcommand examples 303

TEST—DELETE subcommand 305

TEST—DELETE subcommand syntax 305

TEST—DELETE subcommand operand 305

TEST—DELETE subcommand examples 305

TEST—DROP subcommand 305

TEST—DROP subcommand syntax 305

TEST—DROP subcommand operand 306

TEST—DROP subcommand examples 306

TEST—END subcommand . 306

TEST—END subcommand syntax 306

TEST—EQUATE subcommand 307

TEST—EQUATE subcommand syntax 307

TEST—EQUATE subcommand operands 307

TEST—EQUATE subcommand examples 308

TEST—EXEC command . 309

TEST—FREEMAIN subcommand 309

TEST—FREEMAIN subcommand syntax 309

TEST—FREEMAIN subcommand operands 309

TEST—FREEMAIN subcommand examples 310

TEST—GETMAIN subcommand 310

TEST—GETMAIN subcommand syntax 310

TEST—GETMAIN subcommand sperands 311

TEST—GETMAIN subcommand examples 311

TEST—GO subcommand . 311

TEST—GO subcommand syntax 312

TEST—GO subcommand operands 312

TEST—GO subcommand examples 313

TEST—HELP command . 313

TEST—LINK command . 313

TEST—LIST subcommand . 313

TEST—LIST subcommand syntax 313

6 z/OS V1R9.0 TSO/E Command Reference

TEST—LIST subcommand operands 313

TEST—LIST subcommand examples 317

TEST—LISTALC command . 319

TEST—LISTBC command . 319

TEST—LISTCAT command . 319

TEST—LISTDCB subcommand 319

TEST—LISTDCB subcommand syntax 320

TEST—LISTDCB subcommand operands 320

TEST—LISTDCB subcommand examples 321

TEST—LISTDEB subcommand 321

TEST—LISTDEB subcommand syntax 321

TEST—LISTDEB subcommand operands 321

TEST—LISTDEB subcommand examples 322

TEST—LISTDS command . 322

TEST—LISTMAP subcommand 323

TEST—LISTMAP subcommand syntax 323

TEST—LISTMAP subcommand sperands 323

TEST—LISTMAP subcommand examples 323

TEST—LISTPSW subcommand 324

TEST—LISTPSW subcommand syntax 324

TEST—LISTPSW subcommand operands 324

TEST—LISTPSW subcommand examples 325

TEST—LISTTCB subcommand 325

TEST—LISTTCB subcommand syntax 325

TEST—LISTTCB subcommand operands 325

TEST—LISTTCB subcommand examples 326

TEST—LISTVP subcommand 327

TEST—LISTVP subcommand syntax 327

TEST—LISTVP subcommand examples 327

TEST—LISTVSR subcommand 327

TEST—LISTVSR subcommand syntax 327

TEST—LISTVSR subcommand operands 327

TEST—LISTVSR subcommand examples 328

TEST—LOAD subcommand 328

TEST—LOAD subcommand syntax 328

TEST—LOAD subcommand operands 329

TEST—LOAD subcommand examples 329

TEST—OFF subcommand . 329

TEST—OFF subcommand syntax 330

TEST—OFF subcommand operands 330

TEST—OFF subcommand examples 330

TEST—OR subcommand . 331

TEST—OR subcommand syntax 331

TEST—OR subcommand operands 331

TEST—OR subcommand examples 332

TEST—PROFILE command 333

TEST—PROTECT command 333

TEST—QUALIFY subcommand 334

TEST—QUALIFY subcommand syntax 334

TEST—QUALIFY subcommand operands 334

TEST—QUALIFY subcommand examples 335

TEST—RENAME command 336

TEST—RUN subcommand . 336

TEST—RUN subcommand syntax 336

TEST—RUN subcommand operands 336

TEST—RUN subcommand examples 337

Chapter 1. TSO/E commands and subcommands 7

TEST—SEND command . 337

TEST—SETVSR subcommand 338

TEST—SETVSR subcommand syntax 338

TEST—SETVSR subcommand operands 338

TEST—SETVSR subcommand examples 338

TEST—STATUS command . 338

TEST—SUBMIT command . 339

TEST—TERMINAL command 339

TEST—UNALLOC command 339

TEST—WHERE subcommand 339

TEST—WHERE subcommand syntax 339

TEST—WHERE subcommand operands 339

TEST—WHERE subcommand examples 340

TIME command . 341

TIME command syntax . 342

TIME command return code 342

TRANSMIT command . 342

TRANSMIT command syntax 342

TRANSMIT command operands 343

TRANSMIT command return codes 347

Transmitting data sets . 347

Transmitting data sets as messages 348

Transmitting messages . 348

Transmitting enciphered data 348

Transmitting data sets and messages with security labels 349

Logging function of TRANSMIT and RECEIVE 349

NAMES data set function 350

Control section tags . 351

Nicknames section tags . 352

TRANSMIT command examples 354

TSOEXEC command . 356

TSOEXEC command syntax 357

TSOEXEC command operand 357

TSOEXEC command return codes 357

TSOEXEC command examples 357

TSOLIB command . 357

Search order for load modules 358

Further considerations . 359

Command usage . 359

Stacking load module and program object library requests 360

TSOLIB command syntax 360

TSOLIB command operands 361

TSOLIB command return codes 363

TSOLIB command examples 363

VLFNOTE command . 366

Changing data associated with a partitioned data set 367

VLFNOTE command syntax (partitioned data set) 367

VLFNOTE command operands (partitioned data set) 367

VLFNOTE command examples (partitioned data set) 368

Changing non-PDS data . 368

VLFNOTE command syntax (non-PDS) 368

VLFNOTE command operands (non-PDS) 368

VLFNOTE command examples (non-PDS) 369

VLFNOTE command return codes 369

WHEN command . 369

WHEN command syntax . 369

8 z/OS V1R9.0 TSO/E Command Reference

WHEN command operands 369

WHEN command return code 370

WHEN command examples 370

This section describes the functions and syntax of TSO/E commands and their

subcommands. It includes:

v The general format and syntax rules for the commands

v A description of each command. The commands are described in alphabetical

order.

v Examples of how to use commands and subcommands.

The commands are presented in alphabetical order. Subcommands are also

presented in alphabetical order following the command to which they apply.

Introductory information about how to use TSO/E is described in z/OS TSO/E

User’s Guide.

Using a TSO/E command

A command consists of a command name typically followed by one or more

operands. Operands provide the specific information required to perform the

requested operation. For example, operands for the RENAME command identify the

data set you want to rename:

 RENAME OLDNAME NEWNAME

command name operand_1

(old data set name)

operand_2

(new data set name)

You can use two types of operands with the commands: positional and keyword.

Positional operands

Positional operands follow the command name in a certain order. In the command

descriptions within this book, the positional operands are shown in lowercase

characters. For example,

EDIT reports.data

where reports.data is the data_set_name positional operand with the EDIT

command.

When you enter a positional operand that is a list of several names or values, you

must enclose the list within parentheses. For example,

LISTDS (PARTS.DATA TEST.DATA)

Keyword operands

Keyword operands (keywords) are specific names or symbols that have a particular

meaning to the system. You can include keywords in any order following the

positional operands. In the command descriptions within this book, keywords are

shown in uppercase characters.

You can specify values with some keywords. Enclose the value with parentheses

following the keyword. For example, a typical keyword operand with a value is:

LINESIZE(integer)

Using a TSO/E Command

Chapter 1. TSO/E commands and subcommands 9

Continuing this example, you need to select the number of characters that you want

to appear in a line and substitute that number for integer when you enter the

operand:

LINESIZE(80)

However, if you enter conflicting, mutually exclusive keywords, the last keyword you

enter overrides the previous ones.

“How to read the TSO/E command syntax” describes the syntax notation for the

TSO/E commands and subcommands.

How to read the TSO/E command syntax

Throughout this book, syntax of the whole command is described using the

structure defined later in this section.

Read the syntax diagrams from left to right, from top to bottom, following the path of

the line.

Double arrows indicate the beginning and ending of a statement.

�� STATEMENT ��

If a statement syntax requires more than one line to be shown, single arrows

indicate their continuation.

�� STATEMENT �

� ��

Required items appear on the horizontal line (the main path).

�� STATEMENT required_item ��

Optional items appear below the main path.

�� STATEMENT

optional_item
 ��

If you can choose from two or more items, they are stacked vertically.

v If you must choose one of the items, an item of the stack appears on the main

path.

�� STATEMENT required_choice_1

required_choice_2
 ��

v If choosing one of the items is optional, the entire stack appears below the main

path.

Using a TSO/E Command

10 z/OS V1R9.0 TSO/E Command Reference

�� STATEMENT

optional_choice_1

optional_choice_2

 ��

An arrow returning to the left above the main line indicates an item that can be

repeated.

��

STATEMENT

�

repeatable_item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items, or repeat a single choice.

��

STATEMENT

�

repeatable_item_1

repeatable_item_2

��

Default values appear above the main path. For example, if you choose neither

choice_2 nor choice_3, choice_1 is assumed. (Defaults can be coded for clarity

reasons.)

��

STATEMENT
 choice_1

choice_2

choice_3

��

If a syntax diagram becomes too large or too complex to be printed or shown,

fragments of it are shown below the main diagram as details.

�� STATEMENT required_variable

’optional_parameter’
 FRAGMENT ��

FRAGMENT:

 OPERAND

optional_choice_1a

optional_choice_1b

optional_choice_2a

optional_choice_2b

 �

�
optional_choice_3a

optional_choice_3b

optional_choice_4a

optional_choice_4b

The previous syntax diagram is equivalent to the following diagram:

�� STATEMENT required_variable

’optional_parameter’
 OPERAND �

How to Read the TSO/E Command Syntax

Chapter 1. TSO/E commands and subcommands 11

�
optional_choice_1a

optional_choice_1b

optional_choice_2a

optional_choice_2b

optional_choice_3a

optional_choice_3b

 �

�
optional_choice_4a

optional_choice_4b

 ��

 Keywords appear in uppercase (for example, PARM1). They can be spelled exactly

as shown, but they can be in mixed or lower case. Variables appear in all

lowercase letters (for example, parmx). They represent user-supplied names or

values.

If punctuation marks, parentheses, arithmetic operators, or such symbols are

shown, they must be entered as part of the syntax.

Abbreviating keyword operands

You can enter keywords spelled exactly as they are shown or you can use an

acceptable abbreviation. You can abbreviate any keyword by entering only the

significant characters; that is, you must type as much of the keyword as is

necessary to distinguish it from the other keywords of the command or

subcommand. For example, the LISTBC command has four keywords:

v MAIL

v NOMAIL

v NOTICES

v NONOTICES

The abbreviations are:

M for MAIL (also MA and MAI)

NOM for NOMAIL (also NOMA and NOMAI)

NOT for NOTICES (also NOTI, NOTIC, and NOTICE)

NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC, and

NONOTICE)

Also, the DELETE and LISTCAT commands allow unique abbreviations for some of

their keywords. The abbreviations are shown with the syntax and operand

descriptions of DELETE and LISTCAT.

Comments

You can include comments in a TSO/E command anywhere a blank might appear.

To include a comment, start with delimiter /*. If you want to continue the command

after the comment, close the comment with delimiter */.

listd (data_set_list) /* my data sets

or

listd /* my data sets */ (data_set_list)

You do not need to end a comment with */ if the comment is the last thing on the

line. Ending a comment with */ is a convention, not a requirement here. Comments

are most useful in CLISTs.

How to Read the TSO/E Command Syntax

12 z/OS V1R9.0 TSO/E Command Reference

|
|
|
|

Line continuation

 CAUTION:

A plus sign causes leading delimiters to be removed from the continuation

line.

When it is necessary to continue to the next line, use a plus or minus sign as the

last character of the line you want to continue.

list (data_set_list) /* this is a list of my -

 active data sets */

or

alloc dataset(out.data) file(output) new +

space(10,2) tracks release

Note: If you are using REXX commands and want to continue to the next line, the

plus or minus sign does not work. You must use the comma.

The following example shows how to use the comma with the REXX command

(PUSH), to continue to the next line. The comma must be outside the quotation

marks.

/* REXX * test ACCOUNT */

x = Outtrap("var.")

PUSH ’END’

PUSH ’ADD (NEWUSER * * TPROC)’,

 ’UNIT(SYSTS)’,

 ’SIZE(4000)’

Address TSO "ACCOUNT"

x = Outtrap("OFF")

Say ’RC from account was:’ rc

Do i=1 to var.0 /* loop through all messages */

 Say var.i /* display each message */

End

To continue a line that contains a comment, use a continuation character after the

comment:

allocate dataset(my.text) /* data set name */ +

 new volume(tsomar2)

Delimiters

When you type a command, you must separate the command name from the first

operand by one or more blanks. You must separate operands by one or more

blanks or a comma. Do not use a semicolon as a delimiter because any character

you enter after a semicolon is ignored. For example, if you use a blank or a comma

as a delimiter, you can type the LISTBC command as follows:

LISTBC NOMAIL NONOTICES

LISTBC NOMAIL,NONOTICES

LISTBC NOMAIL NONOTICES

When creating (or updating) a CLIST, do not use any of the following as a delimiter:

v The special characters @, $, or #

v A single quote

v A number

v A blank

v A tab

v A comma

v A semicolon

How to Read the TSO/E Command Syntax

Chapter 1. TSO/E commands and subcommands 13

v A parenthesis

v An asterisk

Note: When entering commands under ISPF or Program Control Facility (PCF), do

not use the ISPF or PCF command delimiter character that your installation

has set for these facilities. The default delimiter character for each ISPF and

PCF command is the semicolon (;), but your installation can specify a

different delimiter character.

Using the HELP command

Use the HELP command to receive all the information about the system on how to

use any TSO/E command. The requested information is displayed on your terminal.

Explanations of commands

To receive a list of all the TSO/E commands in the SYS1.HELP data set along with

a description of each, enter the HELP command as follows:

help

You can place information about installation-written commands in the SYS1.HELP

data set. You can also get all the information available about a specific command in

SYS1.HELP by entering the specific command name as an operand on the HELP

command, as follows:

help ALLOCATE

where ALLOCATE is the command name.

Syntax interpretation of HELP information

The syntax notation for the HELP information is different from the syntax notation

presented in this book because it is restricted to characters that are displayed on

your terminal. You can get the syntax interpretation by entering the HELP command

as follows:

help help

Explanations of subcommands

When HELP exists as a subcommand, you can use it to obtain a list of

subcommands or additional information about a particular subcommand. The syntax

of HELP as a subcommand is the same as the HELP command.

Using commands for VSAM and Non-VSAM data sets

Access Method Services is a multi-function service program that primarily

establishes and maintains Virtual Storage Access Method (VSAM) data sets.

Table 1 shows recommended commands, by function, for VSAM and non-VSAM

data sets. Numbers indicate order of preference. Licensed program commands are

identified with an asterisk (*). For commands not covered in this book, see z/OS

DFSMS Access Method Services for Catalogs.

 Table 1. Commands preferred for VSAM/Non-VSAM data sets

Function Non-VSAM VSAM

Build lists of attributes ATTRIB (None)

How to Read the TSO/E Command Syntax

14 z/OS V1R9.0 TSO/E Command Reference

Table 1. Commands preferred for VSAM/Non-VSAM data sets (continued)

Function Non-VSAM VSAM

Allocate new DASD space ALLOCATE DEFINE or

ALLOCATE

Connect data set to terminal ALLOCATE ALLOCATE

List names of allocated (connected) data sets LISTALC LISTALC

Modify passwords PROTECT DEFINE, ALTER

List attributes of one or more objects 1. LISTDS,

2. LISTCAT

1. LISTCAT,

2. LISTDS

List names of cataloged data sets (limit by type) LISTCAT LISTCAT

List names of cataloged data sets (limit by naming

convention)

LISTDS LISTDS

Catalog data sets 1. DEFINE,

2. ALLOCATE

DEFINE

List contents of data set EDIT, LIST* PRINT

Rename data set RENAME ALTER

Delete data set DELETE DELETE

Copy data set COPY* REPRO

TSO/E commands and subcommands

TSO/E commands which require a data set name (for example, Edit, DELete, XMIT)

first search the current allocations to see if the data set is already allocated to the

TSO/E session. If the data set name is already allocated, it will be used by the

command. If the data set name is not allocated, it will be allocated based on the

standard catalog search order. Therefore, if a data set is desired that is not

cataloged, you must use the ALLOCATE command to allocate it to the TSO/E

session (see “ALLOCATE command” on page 17). This data set will then be used

by all subsequent commands that use this data set name as one of the parameters.

Conversely, if an uncataloged data set is allocated to the TSO/E session with the

same name as a cataloged data set, and the cataloged data set is desired, you

must first use the FREE command for the uncataloged data set so that the standard

catalog search order will be used to find the cataloged data set.

Summary of TSO/E commands

 Table 2. Summary of the TSO/E commands

Command Function

ALLOCATE Dynamically allocates data sets.

ALTLIB Defines alternative application-level libraries of REXX EXECs or CLISTs.

ATTRIB Builds a list of attributes for non-VSAM data sets.

CALL Loads and executes a program.

CANCEL Ends the processing of batch jobs submitted at your terminal.

DELETE Deletes data set entries or members of a partitioned data set.

EDIT Creates, modifies, stores, submits, retrieves, and deletes data sets. See

command definitions for definitions of EDIT subcommands.

END Ends a CLIST.

EXEC Executes a CLIST or REXX exec.

EXECUTIL Changes various characteristics that control how REXX execs run in the

TSO/E address space only.

FREE Releases previously allocated data sets, changes the output of a SYSOUT

data set, deletes attribute lists, or changes data set disposition.

HELP Gets information about the function, syntax, and operands of commands

and subcommands and information about certain messages.

How to Read the TSO/E Command Syntax

Chapter 1. TSO/E commands and subcommands 15

Table 2. Summary of the TSO/E commands (continued)

Command Function

LINK Invokes the linkage editor service program.

LISTALC Lists data sets that are currently allocated to the TSO/E session.

LISTBC Displays messages of general interest.

LISTCAT Lists entries from a catalog by name or entry type.

LISTDS Displays attributes of data sets.

LOADGO Loads a compiled or assembled program into real storage and begins

execution.

LOGOFF Ends your terminal session.

LOGON Starts your terminal session.

MVSSERV Starts a TSO/E Enhanced Connectivity Facility session between an IBM

Personal Computer and a host computer running TSO/E MVS.

OUTDES Creates or reuses dynamic output descriptors.

OUTPUT Directs output from a job to your terminal or to a specific data set; deletes

the output, changes output class, routes output to a remote workstation, or

releases the output for a job for printing by the subsystem.

PRINTDS Formats and prints data sets on any printer defined to JES.

PROFILE Changes or lists your user profile.

PROTECT Prevents unauthorized access to your non-VSAM data sets.

RECEIVE Retrieves transmitted files and restore them to their original format.

RENAME Changes the name of a non-VSAM cataloged data set, changes the

member name of a partitioned data set, or creates an alias for a partitioned

data set member.

RUN Compiles, loads, and executes the source statements in a data set.

SEND Sends a message to another terminal user or to the system operator.

SMCOPY Copies all or part of a stream or data set to another stream or data set.

SMFIND Locates a string of characters in a stream.

SMPUT Places a string of characters in a stream.

STATUS Displays the status of a job.

SUBMIT Submits one or more batch jobs for processing.

TERMINAL Lists or changes operating characteristics of your terminal.

TEST Tests a program or command processor written in Assembler language.

TIME Displays CPU and session time, total service units used, local time of day

and date.

TRANSMIT Sends information, such as a message or a copy of information in a data

set, to another user in the network.

TSOEXEC Invokes an authorized command from an unauthorized environment.

TSOLIB Dynamically links to different versions of load module libraries from within a

user’s TSO/E session.

VLFNOTE Notifies VLF that a change has been made to a partitioned data set or a

non-partitioned data set.

WHEN Tests return codes from programs invoked from an immediately preceding

CALL or LOADGO command, and to take prescribed action if the return

code meets a specified condition.

Note: Except for the DELETE and LISTCAT commands, TSO/E does not support

generation data group (GDG) data sets.

Summary of TSO/E Commands

16 z/OS V1R9.0 TSO/E Command Reference

ALLOCATE command

Use the ALLOCATE command or the ALLOCATE subcommand of EDIT (the

subcommand’s function and syntax are identical to the ALLOCATE command) to

allocate dynamically the VSAM and non-VSAM data sets, and UNIX files required

by a program that you intend to execute. Each UNIX file system data set contains

zero or more UNIX files.

Each UNIX file system data set has a 44-byte data set name and must be

capitalized and cataloged. A UNIX file has a mixed-case name of up to 250

characters.

There is no documented API for an UNIX file system data set. Users can access

UNIX files with BSAM, QSAM, VSAM and UNIX calls.

You can specify data set attributes for non-VSAM data sets that you intend to

allocate dynamically in several ways:

v Use the LIKE operand to obtain the attributes from an existing model data set (a

data set that must be cataloged) whose data set attributes you want to use. You

can override model data set attributes by explicitly specifying the desired

attributes on the ALLOCATE command.

v Identify a data set and describe its attributes explicitly on the ALLOCATE

command.

v Use the ATTRIB command to build a list of attributes. During the remainder of

your terminal session, you can have the system refer to this list for data set

attributes by specifying the USING operand when you enter the ALLOCATE

command. The ALLOCATE command converts the attributes into the data control

block (DCB) operands for data sets being allocated. If you code DCB attributes in

an attribute-list and you refer to the attribute-list using the USING operand on the

ALLOCATE command, any DCB attribute you code on the ALLOCATE command

is ignored.

v With the Storage Management Subsystem (SMS) installed and active, use the

DATACLAS operand. Your storage administrator might provide default data set

attributes through the automatic class selection (ACS) routine. Using DATACLAS

to define the data class for the data set makes specifying all the attributes

unnecessary.

In this book, “with SMS” indicates that SMS is installed and is active. “Without SMS”

indicates that SMS is not installed. Requesting space, in terms of a quantity of

logical records, is device-independent and is particularly useful in conjunction with a

system-determined BLKSIZE. This space can be obtained by omitting the BLKSIZE

operand and coding LRECL, RECFM, and DSORG, or acquiring these from SMS

DATACLAS.

Data sets with SMS

If your installation has the Storage Management Subsystem (SMS), and it is active,

SMS allows you to more easily define new data sets by managing storage

requirements for you. The storage administrator at your installation determines the

data sets that are to be managed by SMS. The administrator writes the automatic

class selection (ACS) routine that SMS uses to assign definitions or classes to a

new data set. See SMS classes.

SMS can manage the following types of data sets:

v Physical sequential data sets

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 17

v Partitioned data sets

v VSAM data sets

v Generation data group (GDG) data sets

v Temporary data sets

v Virtual input output (VIO) data sets

SMS does not manage the following types of data sets:

v Tape data sets

v ISAM data sets

v Sysout data sets

v Subsystem data sets

v TSO/E data sets coming from or going to a terminal

v In-stream data sets

SMS classes

With SMS, a new data set can have one or more of the following three classes:

v Data class contains the data set attributes related to the allocation of the data

set, such as LRECL, RECFM, SPACE, and TRACKS.

v Storage class contains performance and availability attributes related to the

storage occupied by the data set. A data set that has a storage class assigned to

it is defined as an “SMS-managed” data set.

v Management class contains the data set attributes related to the migration and

backup of the data set, such as performed by DFSMShsm, and the expiration

date of the data set. A management class can be assigned only to a data set that

also has a storage class assigned.

All of the preceding classes are defined by the storage administrator at your

installation. The administrator writes the automatic class selection (ACS) routines

that SMS uses to assign the classes to a new data set.

The DATACLAS, MGMTCLAS, and STORCLAS operands of the ALLOCATE

command simplify the process of allocating a new data set. For example, assigning

the DATACLAS operand to a data set keeps you from having to specify all the

attributes of the data set on the ALLOCATE command. If you assign a storage class

(STORCLAS) to a data set, you do not have to specify a volume serial number

(VOLUME) or a unit type (UNIT).

If you do not specify DATACLAS, MGMTCLAS, and STORCLAS or the overriding

attributes (DSORG, RECFM, LRECL, and so forth), the system assumes the

defaults that the storage administrator defined through the ACS routines. The ACS

routines can either change or retain the specified data set attributes. You can

specify both a class attribute and an overriding attribute, such as DATACLAS and

SPACE. The system uses SPACE as the storage value and the allocation attributes

associated with the name specified on DATACLAS.

Note: You must explicitly allocate a new SMS-managed data set with a disposition

of NEW.

Allocating non-SMS-managed data sets

With SMS, you can specify DATACLAS to allocate non-SMS-managed data sets.

You cannot, however, use the STORCLAS and MGMTCLAS operands. STORCLAS

and MGMTCLAS determine whether a data set is managed by SMS.

ALLOCATE Command

18 z/OS V1R9.0 TSO/E Command Reference

Allocating z/OS UNIX data sets

For z/OS UNIX, you can specify the following operands: PATH, PATHDISP,

PATHMODE, PATHOPTS, DSNTYPE(HFS), and DSNTYPE(PIPE). For more

information, see z/OS TSO/E User’s Guide.

ALLOCATE command syntax

�� ALLOCATE

ALLOC
 �

�

�

�

 DATASET (*)

DSNAME

FILE

(name)

DDNAME

dsname

DUMMY

FILE

(name)

DDNAME

DATASET

(

*

)

DSNAME

dsname

DUMMY

 ��

��

OLD

SHR

MOD

NEW

SYSOUT

(class)

DATACLAS(data_class_name)
 ��

��

MGMTCLAS(management_class_name)

STORCLAS(storage_class_name)
 �

�
VOLUME(serial_list)

 �

�
SPACE(quantity

)

BLOCK(value)

,increment

AVBLOCK(value)

TRACKS

CYLINDERS

 ��

��

AVGREC(

U

)

K

M

BLKSIZE(value)

DIR(integer)
 �

�
ALTFILE(name)

DEST(

destination

)

destination.user_id

REUSE
 �

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 19

�
 NOHOLD

HOLD

UNIT(type)

UCOUNT(count)

PARALLEL

LABEL(type)

��

��

ACCODE(access_code)

POSITION(sequence_no.)

MAXVOL(count)
 �

�
PRIVATE

VSEQ(vol_seq_no.)

LIKE(model_dsname)

USING(attr_list_name)

 �

�
REFDD(file_name)

SECMODEL(profile_name

)

,GENERIC

RELEASE
 ��

��

ROUND

KEEP

DELETE

CATALOG

UNCATALOG

BUFL(buffer_length)

BUFNO(number_of_buffers)

 �

�

LRECL(

logical_record_length

)

X

nnnnnK

 NCP(1)

NCP(no._of_channel_programs)

��

��

INPUT

OUTPUT

�

EXPDT(year_day)

RETPD(no._of_days)

BFALN(

F

)

D

�

�

�

,

OPTCD(

A

)

B

C

E

F

H

J

Q

R

T

W

Z

EROPT(

ACC

)

SKP

ABE

BFTEK(

S

)

E

A

R

 ��

ALLOCATE Command

20 z/OS V1R9.0 TSO/E Command Reference

��

�

,

RECFM(

A

)

B

D

F

M

S

T

U

V

DIAGNS(TRACE)

LIMCT(search_number)
 �

�
BUFOFF(

block_prefix_length

)

L

DSORG(

DA

)

DAU

PO

POU

PS

PSU

 ��

��

DEN(

0

)

1

2

3

4

NOCOMP

TRTCH(

C

)

E

COMP

T

ET

KEYLEN(bytes)

KEYOFF(offset)
 �

�
RECORG(

ES

)

KS

LS

RR

PROTECT
 ��

��

�

COPIES(nnn

)

,

,

(

group_value

)

BURST

NOBURST

 �

�

�

CHARS(

,

table_name

)

FLASH(overlay_name

)

copies

 ��

��

MODIFY(module_name

)

,trc

FCB(image_id

)

,ALIGN

,VERIFY

 �

�
FORMS(forms_name)

�

OUTDES(

output_descriptor_name

)

 ��

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 21

��

SPIN(

UNALLOC

)

NO

SEGMENT(page_count)
 �

�
DSNTYPE(

LIBRARY

)

PDS

HFS

PIPE

LARGE

BASIC

EXTREQ

EXTPREF

UCS(universal_character_set_name)
 ��

��

WRITER(external_writer_name)

�

PATH(

/pathname

)

 �

�
KEEP

,KEEP

PATHDISP(

)

DELETE

,DELETE

 ��

��

�

PATHMODE(

file_access_attribute

)

�

PATHOPTS(

file_option

)

 �

�
BINARY

FILEDATA(

TEXT

)

RLS(

NRI

)

CR

 ��

ALLOCATE command operands

DATASET(dsname | *) | DSNAME(dsname | *)

specifies the name or a list of names of the data sets that are to be allocated. If

a list of data set names is entered, ALLOCATE allocates and concatenates

non-VSAM data sets. The data set name must include the descriptive

(rightmost) qualifier and can contain a member name in parentheses.

 If you specify a password, you are not prompted for it when you open a

non-VSAM data set.

 If you want to allocate a file to the terminal for input or output, only the following

operands are processed:

ALLOCATE DA(*) FILE, DDNAME, BLOCK, BLKSIZE, USING

If you allocate more than one data set to your terminal, the block size and other

data set characteristics, which default on the first usage, are also used for all

other data sets. This happens for input or output. Use the ATTRIB command

and the USING operand of ALLOCATE to control the data set characteristics.

v Data sets residing on the same physical tape volume cannot be allocated

concurrently.

v The following items should be noted when using the concatenate function:

ALLOCATE Command

22 z/OS V1R9.0 TSO/E Command Reference

– The data sets specified in the list must be cataloged. You can use the

CATALOG operand of either the ALLOCATE or FREE commands to

catalog a data set.

– The maximum number of data sets that you can concatenate is 255. This

maximum applies to sequential data sets. For more information about the

maximum number of partitioned data sets that you can concatenate, see

z/OS DFSMS Using Data Sets. The data sets to be concatenated must all

have the same record format (RECFM). If you omit the BLKSIZE operand

from the concatenation statement, the system uses the block size of the

first data set. If the data sets have different block sizes, you must specify

the data set with the largest block size first. In most situations the access

method automatically handles block size differences. For more information

see z/OS DFSMS Using Data Sets.

– The data set group is concatenated. You must free it to deconcatenate it.

The file name specified for the FILE or DDNAME operand on the

ALLOCATE command must be the same as that specified for the FILE or

DDNAME operand on the FREE command.

– The system ignores all operands except for DATASET/DSNAME,

FILE/DDNAME, and status operands. The following DCB attribute

operands are allowed when concatenating data sets:

BLKSIZE INPUT EROPT BUFOFF USING

BUFL OUTPUT BFTEK DEN

BUFNO BFALN DIAGNS TRTCH

NCP OPTCD LIMCT KEYLEN

v To allocate a member of a generation data group, specify the fully-qualified

data set name, including the generation number.

v The ALLOCATE command verifies the existence of a data set on the

specified volume(s) only when the VOLUME operand is also specified.

v When you invoke ALLOCATE to perform dsname dynamic allocation, an

“allocation environment” already exists for your request. It consists of the

allocation requests, made through your JCL or internal dynamic allocation,

that have not yet been deallocated. These resources are considered to be

existing allocations, and are considered first in the attempt to fill your

ALLOCATE requests.

If possible, ALLOCATE will use an existing allocation to satisfy your dsname

allocation request. Although some parameters can be changed if necessary,

the request and the existing allocation must match according to several

criteria before the allocation can be selected to satisfy your request.

For more information about this criteria and using an existing allocation, see

z/OS MVS Programming: Authorized Assembler Services Guide.

DUMMY

specifies that no devices or external storage space are to be allocated to the

data set, and no disposition processing is to be performed on the data set.

Entering the DUMMY operand has the same effect as specifying NULLFILE as

the data set name on the DATASET or DSNAME operand.

 If you want to allocate a DUMMY data set, only the following operands are

processed:

ALLOCATE DUMMY, FILE, DDNAME, BLOCK, BLKSIZE, USING

The following operands are not valid when you specify a DUMMY data set:

COPIES, DEST

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 23

FILE(name) | DDNAME(name)

specifies the name to be associated with the data set. It can contain up to eight

characters. (This name corresponds to the name on the data definition (DD)

statement in job control language and must match the ddname in the data

control block (DCB) that is associated with the data set.) For PL/I, this name is

the file name in a DECLARE statement and has the form DCL file name FILE;

for example, DCL MASTER FILE. For COBOL, this name is the external name

used in the ASSIGN TO clause. For FORTRAN, this name is the data set

reference number that identifies a data set and has the form FTxxFyyy, for

instance, FT06F002.

 If you omit this operand, the system assigns an available file name (ddname)

from a data definition statement in the procedure that is invoked when you enter

the LOGON command.

 Do not use special ddnames unless you want to use the facilities those names

represent to the system.

 For more information about the special ddnames SYSMDUMP, SYSUDUMP,

SYSCHK, SYSCKEOV, and SYSABEND see z/OS MVS JCL Reference.

 For more information about the special ddnames JOBCAT, JOBLIB, STEPCAT,

and STEPLIB see z/OS MVS JCL Reference.

OLD | SHR | MOD | NEW | SYSOUT(class)

OLD

indicates the data set currently exists and you require exclusive use of the

data set. The data set should be cataloged. If it is not, you must specify the

VOLUME operand. OLD data sets are retained by the system when you

free them from allocation. The DATASET or DSNAME operand is required.

SHR

indicates the data set currently exists, but you do not require exclusive use

of the data set. Others can use it concurrently. ALLOCATE assumes the

data set is cataloged if the VOLUME operand is not entered. SHR data sets

are retained by the system when you free them. The DATASET or

DSNAME operand is required.

MOD

indicates you want to append data to the end of the sequential data set. Do

not catalog the data set or specify VOLUME=SER when you use

DISP=MOD to create a new data set. After creation, the system changes

the disposition of the data set to NEW. If the data set does not exist, a new

data set is created and the disposition is changed to NEW. MOD data sets

are retained by the system when you free them. The DATASET or

DSNAME operand is required.

NEW

(non-VSAM only, unless SMS is running) indicates the data set does not

exist and it is to be created. For new partitioned data sets, you must specify

the DIR operand. If you specify a data set name, a NEW data set is kept

and cataloged. If you do not specify a data set name, it is deleted when you

free it or log off.

 SMS will only manage data sets that were allocated with a disposition of

NEW while SMS was active.

SYSOUT[(class)]

indicates the data set is to be a system output data set. An optional subfield

can be defined giving the output class of the data set. Output data is initially

ALLOCATE Command

24 z/OS V1R9.0 TSO/E Command Reference

|
|
|
|
|

|
|

directed to the job entry subsystem (JES) and can later be transcribed to a

final output device. The final output device is associated with output class

by the installation. After transcription by the job entry subsystem, SYSOUT

data sets are deleted.

 The system generates names for SYSOUT data sets; therefore, you should

not specify a data set name when you allocate a SYSOUT data set. If you

do, the system ignores it.

 You can specify the OUTDES operand of the ALLOCATE command or the

PRINTDS command to supply the name or names of the output descriptors

that were created by the OUTPUT JCL statements in the LOGON

procedure. Specifying OUTDES eliminates the need to supply information

related to the printer or the type of printing to be done. For more

information about establishing OUTPUT JCL statements in the LOGON

procedure, see z/OS TSO/E Customization.

 If you do not specify an output class value, the ALLOCATE command uses

the default output class, which was determined during logon for your user

ID. If no default class was set for your user ID, JES assigns an output class

according to its assignment procedures, using any referenced or default

output descriptors.

 If you want to allocate a SYSOUT data set, the following operands are used

exclusively with SYSOUT:

ALLOCATE DDNAME, SYSOUT, DEST, HOLD, NOHOLD, COPIES, BURST/NOBURST,

CHARS, FLASH, MODIFY, FCB, FORMS, OUTDES, UCS, WRITER, SPIN, SEGMENT

 If you do not specify OLD, SHR, MOD, NEW, or SYSOUT, a default value is

assigned or a value is prompted for, depending on the other operands specified:

v If the LIKE operand or any space operands (SPACE, DIR, BLOCK, BLKSIZE,

AVBLOCK, TRACKS, or CYLINDERS) are specified, then the status defaults

to NEW.

v If the COPIES operand is specified, then the status defaults to SYSOUT.

v If the DATASET/DSNAME operand is entered without the LIKE operand or

any space operands, then the status defaults to OLD.

v If the LIKE operand, the DATASET/DSNAME operand, and the space

operands are all omitted, you are prompted to enter a status value.

VOLUME(serial_list)

specifies the serial number(s) of an eligible direct access volume(s) on which a

new data set is to reside or on which an old data set is located. If you specify

VOLUME for an old data set, the data set must be on the specified volume(s)

for allocation to take place. If you do not specify VOLUME, new data sets are

allocated to any eligible direct access volume. Eligibility is determined by the

UNIT information in your procedure entry in the user attribute data set (UADS).

You can specify up to 255 volume serial numbers.

 With SMS, the VOLUME operand is not suggested. The system determines the

UNIT and VOLUME from the storage class (STORCLAS operand) associated

with the data set. If SMS does not manage the data set and you want to

allocate a data set to a specific volume, explicitly specify VOLUME.

DATACLAS(data_class_name)

if SMS is active, specifies the name, 1 to 8 characters, of the data class for the

data set. The data set does not have to be managed by SMS.

 Using the DATACLAS operand to define the data class makes specifying all the

attributes for a data set unnecessary. For example, the storage administrator

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 25

might provide RECFM, LRECL, RECORG, KEYLEN, and KEYOFF as part of

the data class definition. However, you can override the DATACLAS operand by

explicitly specifying the appropriate operands on the ALLOCATE command. If

you specify DATACLAS for an existing data set, SMS ignores it.

 The data class defines the following data set allocation attributes:

v Data set organization (record organization or record format):

– Record organization (RECORG)

– Record format (RECFM)
v Record length (LRECL)

v Key length (KEYLEN)

v Key offset (KEYOFF)

v Space allocation

– AVGREC

– SPACE
v Expiration date (EXPDT) or retention period (RETPD)

v Volume number (VOLUME)

v For VSAM data sets, the following:

– IMBED or REPLACE

– CISIZE

– FREESPACE

– SHAREOPTIONS

Note: Without SMS, the system syntax checks and then ignores the

DATACLAS operand.

MGMTCLAS(management_class_name)

with an SMS-managed data set, specifies the name, 1 to 8 characters, of the

management class for a new data set. When possible, do not specify

MGMTCLAS. Instead, use the default your storage administrator provides

through the ACS routines.

 After the data set is allocated, attributes in the management class control the

following:

v The migration of the data set, which includes migration from primary storage

to Data Facility Hierarchical Storage Manager (DFHSM) owned storage to

archival storage.

v The backup of the data set, which includes frequency of backup, number of

versions, and retention criteria for backup versions.

Note: Without SMS, the system syntax checks and then ignores the

MGMTCLAS operand.

STORCLAS(storage_class_name)

with SMS, specifies the name, 1 to 8 characters, of the storage class. If you

have no specific storage class requirements, do not specify STORCLAS.

Instead, use the default your storage administrator provides through the ACS

routines.

 The storage class replaces the storage attributes that are specified on the UNIT

and VOLUME operand for non-SMS-managed data sets.

 An “SMS-managed data set” is defined as a data set that has a storage class

assigned. A storage class is assigned when the installation-written ACS routine

selects a storage class for the new data set.

Note: Without SMS, the system syntax checks and then ignores the

STORCLAS operand.

ALLOCATE Command

26 z/OS V1R9.0 TSO/E Command Reference

SPACE(quantity,increment)

 specifies the amount of space to be allocated when creating or extending a

DASD data set.

quantity

specifies the number of units of space to be allocated initially when creating

or extending a DASD data set.

increment

specifies the number of units of space to be added to the data set each

time the previously allocated space has been filled. You must specify the

primary quantity along with the increment value.

 SPACE can be specified for SYSOUT, NEW, and MOD data sets. The SPACE

parameter has no effect if SYSOUT is coded also.

 If you omit this operand, the system uses the IBM-supplied default value

SPACE(4,24) AVBLOCK (8192). However, your installation might have changed

the default; see z/OS MVS Programming: Authorized Assembler Services

Guide.

 With SMS, the system does not prompt you for the space. To have the system

obtain the amount of space, specify both the AVGREC and AVBLOCK operand.

 Specifying AVGREC requires you to also specify an average record length. You

can use the AVBLOCK keyword. If you do not specify BLOCK or BLKSIZE, the

system determines the optimized value.

 When you specify SPACE, you must specify a unit of space. To indicate the unit

of space for allocation, you must specify one of the following:

v BLOCK(value)

v BLKSIZE(value)

v AVBLOCK(value)

v TRACKS

v CYLINDERS

The amount of space requested is determined as follows:

v BLOCK(value) or BLKSIZE(value): Multiply the value of the BLOCK/BLKSIZE

operand by the quantity value of the SPACE operand. With SMS, if you do

not specify BLKSIZE, the system determines an optimum DCB block size for

the new data set.

v AVBLOCK(value): Multiply the value of the AVBLOCK operand by the

quantity value of the SPACE operand. The AVBLOCK is the average logical

record length and should be coded with the AVGREC(U, K, or M) operand.

v TRACKS: The quantity value of the SPACE operand is the number of tracks

you are requesting.

v CYLINDERS: The quantity value of the SPACE operand is the number of

cylinders you are requesting.

See the preceding information concerning the AVGREC operand about how the

amount of space is determined for each of these keywords.

BLOCK(value)

specifies the average length of the blocks written to the data set. The maximum

block value used to determine space to be allocated is 65,535. The block value

is the unit of space used by the SPACE operand. A track or a cylinder on one

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 27

|
|

|
|

device can represent a different amount of storage (number of bytes) than a

track or a cylinder on another device. The unit of space value is determined in

one of the following ways:

v From the default value, which is SPACE (4,24) AVBLOCK (8192), when no

space operands (that is, SPACE, BLOCK, TRACKS, AVBLOCK, or

CYLINDERS) are specified.

v From the BLOCK operand, if specified.

v From the model data set, if the LIKE operand is specified and BLOCK,

TRACKS, AVBLOCK, or CYLINDERS are not specified on ALLOCATE. This

is true only when SMS is inactive. When SMS is active, LIKE does not

retrieve the unit of space(CYL/TRK/BLK) from the model data set.

v From the BLKSIZE operand, if BLOCK is not specified.

Note that the default value for space is installation dependent. Your installation

might have changed the default value.

 If you do not specify BLKSIZE, the system attempts to determine an optimum

DCB block size for the new data set.

AVBLOCK(value)

 specifies the average length (in bytes) of the records that are written to the data

set. This parameter only has an effect if SPACE is specified.

 With SMS, to allocate space in a quantity of records instead of blocks, tracks,

or cylinders, use both the AVBLOCK and AVGREC operands. Do not code the

BLOCK, TRACKS, or CYLINDERS operands.

TRACKS

specifies the unit of space is to be a track. This parameter only has an effect if

SPACE is specified.

 With SMS, if you do not want to explicitly specify TRACKS, specify both the

AVGREC and AVBLOCK operands instead of the TRACKS operand.

CYLINDERS

specifies the unit of space is to be a cylinder. This parameter only has an effect

if SPACE is specified.

 With SMS, if you do not want to explicitly specify CYLINDERS, specify both the

AVGREC and AVBLOCK operands instead of the CYLINDERS operand.

AVGREC(U | K | M)

 together with AVBLOCK in SMS, determines the size of the average record

length. This parameter only has an effect if SPACE is specified. Following are

the values for AVGREC:

U Use the primary and secondary space quantities specified on the SPACE

operand.

K Multiply primary space quantity and secondary space quantity specified on

the SPACE operand by 1024 (1 K).

M Multiply primary space quantity and secondary space quantity specified on

the SPACE operand by 1,048,576 (1 M).

 For example, if you want to allocate 12 mega units of space, you can specify

SPACE(12) AVGREC(M), which results in 12 * 1,048,576 = 12,582,912.

ALLOCATE Command

28 z/OS V1R9.0 TSO/E Command Reference

|
|

|
|

|
|

|
|

|
|

|
|
|

To get a secondary space quantity, you need to specify SPACE(12,1)

AVGREC(M). This specification provides 12 mega units of primary space and 1

mega unit of secondary space. The unit of space is determined by either

BLOCK, BLKSIZE, or AVBLOCK.

 If AVGREC(K), AVBLOCK(128), and SPACE(5,2) are specified, the average

record length is 128, the primary quantity of records is 5K, and the second

quantity of records is 2K.

BLKSIZE(blocksize)

specifies the block size for the data set. The maximum allowable decimal value

for block size recorded in the DCB is 32,760.

 With DASD, labeled tape or spooled data set, or a TSO terminal, if you do not

specify BLKSIZE, the system determines the optimum block size for the new

data set unless you have undefined length records. For more information see

z/OS DFSMS Using Data Sets.

 The DCB block size is determined in one of the following ways:

v If USING is specified, from the attribute list. You cannot use the BLKSIZE

operand on ALLOCATE for the block size.

v If you specify BLKSIZE on ALLOCATE, from the BLKSIZE operand.

v If LIKE is specified and BLKSIZE is not specified on ALLOCATE, from the

model data set.

With SMS, BLKSIZE is not copied from the model data set. Without SMS,

BLKSIZE is copied from the model data set.

v If neither USING, BLKSIZE, nor LIKE is specified, from the BLOCK operand.

The block size that you specify to be recorded in the data control block (DCB)

must be consistent with the requirements of the RECFM operand:

v RECFM(F) – the block size must be equal to the logical record length.

v RECFM(F,B) – the block size must be an integral multiple of the logical

record length.

v RECFM(V) – the block size must be equal to or greater than the largest

block in the data set. (Note: For unblocked variable-length records, the size

of the largest block must allow space for the four-byte block descriptor word

in addition to the largest logical record length. The logical record length must

allow space for a four-byte record descriptor word.)

v RECFM(V,B) – the block size must be equal to or greater than the largest

block in the data set. For block variable-length records, the size of the largest

block must allow space for the four-byte block descriptor word in addition to

the sum of the logical record lengths that will go into the block. Each logical

record length must allow space for a four-byte record descriptor word.

Because the number of logical records can vary, you must estimate the

optimum block size and the average number of records for each block based

on your knowledge of the application that requires the I/O.

v RECFM(U) – for files allocated to the TSO/E terminal with RECFM(U) and

BLKSIZE(80), one character is truncated from the line. That character (the

last byte) is reserved for an attribute character.

Specify BLKSIZE with the ALLOCATE command when using the LIKE

operand, because optimal BLKSIZE is not determined by the system for a

RECFM(U) data set.

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 29

|

The operands BLOCK, BLKSIZE, AVBLOCK, TRACKS, and CYLINDERS can

be specified for SYSOUT, NEW, or MOD data sets. The operands BLOCK or

BLKSIZE can also be specified for dummy or terminal data sets.

DIR(integer)

specifies the number of 256 byte records that are to be allocated for the

directory of a new partitioned data set. This operand must be specified if you

are allocating a new partitioned data set. Generally it is not useful for a PDSE.

ALTFILE(name)

specifies the name associated with the SYSIN subsystem data set that is to be

allocated. It can contain up to 8 characters. This operand is used primarily in

the background.

DEST({destination | destination.user_id})

specifies a specific remote workstation or a user at a specific remote

workstation to which SYSOUT data sets are directed upon deallocation. Specify

1 to 8 characters for either the destination or the user ID.

REUSE

specifies the file name being allocated is to be freed and reallocated if it is

currently in use.

 When you allocate a data set with file name or ddname, give it a disposition of

SHR or OLD. You cannot use the REUSE operand to reallocate a file from a

disposition of OLD to a disposition of SHR. However, you can first free the file

with a disposition of OLD, then reallocate it with a disposition of SHR.

HOLD | NOHOLD

HOLD

specifies the data set is to be placed on a HOLD queue upon deallocation.

NOHOLD

specifies processing of the output should be determined by the

HOLD/NOHOLD specification associated with the particular SYSOUT class

specified. However, the specification associated with the SYSOUT class

can be overridden by using the NOHOLD operand on the FREE command.

UNIT(type)

specifies the type of the unit to which a file or data set is to be allocated. You

can specify an installation-defined group name, a generic device type, or a

specific device number.

 Since MVS/ESA SP 5.1 device numbers can be up to four digits long for

increased addressability of I/O devices. If the string representing a device

number is longer than three hexadecimal characters (for example, X'1ABC' or

X'3390'), it must be preceded by a slash (/). A device number may be preceded

by a slash even if it less than four characters long.

 This distinguishes numeric-only device numbers from generic device types that

contain only four-character numerics.

 If volume information is not supplied (volume and unit information is retrieved

from a catalog), the unit type that is coded overrides the unit type from the

catalog.

 If the data set is managed by SMS, the UNIT operand is not suggested. The

system determines the UNIT and VOLUME from the storage class associated

with the data set. If the storage administrator has set up a default unit type

under SMS regardless of whether the data set is SMS-managed, you do not

have to specify UNIT.

ALLOCATE Command

30 z/OS V1R9.0 TSO/E Command Reference

Without SMS, if you do not specify UNIT, the default UNIT is obtained from the

user attribute data set (SYS1.UADS) or the security system being used (if

SYS1.UADS is not being used).

 The default specification for the UNIT operand relates to the LOGON procedure

selected in the foreground. If the ALLOCATE command is to be executed in the

background, and the UNIT operand is not specified, the default operand value

is not obtained from the user attribute data set (SYS1.UADS) or the security

system. See the z/OS TSO/E User’s Guide, for a description of command

processing differences when executing foreground commands from a

background job.

UCOUNT(count)

specifies the maximum number of devices to be allocated, where count is a

value from 1-59.

PARALLEL

specifies one device is to be mounted for each volume specified on the

VOLUME operand or in the catalog. This is meaningful only for magnetic tape.

LABEL(type)

specifies the kind of label processing to be done. Type can be one of the

following: SL, SUL, AL, AUL, NSL, NL, LTM, or BLP. These types correspond to

the JCL label-type values.

ACCODE(access_code)

specifies or changes the accessibility code for an ISO/ANSI labeled output tape

data set. The purpose of the code is to protect the ANSI data set from

unauthorized use. Up to 8 characters (A-Z) are permitted in the access code,

but only the first character is validated by ANSI. The first character must be an

uppercase alphabetic character. An installation exit routine validates it. That

routine is described in z/OS MVS Installation Exits.

POSITION(sequence_no.)

specifies the relative position (1- 65535) of the data set on a multiple data set

tape. The sequence number corresponds to the data set sequence number field

of the label operand in JCL.

MAXVOL(count)

specifies the maximum number (1-255) of volumes a data set can reside upon.

This number corresponds to the count field on the VOLUME operand in JCL.

PRIVATE

specifies the private volume use attribute be assigned to a volume that is not

reserved or permanently in resident. This operand corresponds to the PRIVATE

keyword of the VOLUME operand in JCL.

 If VOLUME and PRIVATE operands are not specified and the value specified

for MAXVOL exceeds the value specified for UCOUNT, the system does not

demount any volumes when all of the mounted volumes have been used,

causing abnormal termination of your job. If PRIVATE is specified, the system

demounts one of the volumes and mounts another volume in its place so that

processing can continue.

VSEQ(vol_seq_no.)

specifies at which volume (1-255) of a multi-volume data set processing is to

begin. This operand corresponds to the volume sequence number on the

VOLUME operand in JCL.

LIKE(model_dsname)

specifies the name of an existing model data set whose attributes are to be

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 31

|
|

|
|
|
|
|
|

used as the attributes of the new data set being allocated. This data set must

be cataloged and must reside on a direct access device. The volume must be

mounted when you issue the ALLOCATE command.

 If SMS is active in the system, ALLOCATE assigns attributes to a new data set

by copying all of the following attributes from the model data set:

v Primary space quantity (SPACE)

v Secondary space quantity (SPACE)

v Space unit (BLOCK, AVBLOCK, TRACKS, CYLINDERS)

v AVGREC unit (KB, megabyte)

v Directory space quantity (DIR)

v Data set organization:

– RECORG for a VSAM data set

– DSORG for a non-VSAM data set
v Logical record length (LRECL)

v Key length (KEYLEN)

v Record format (RECFM)

v Key offset (KEYOFF)

Note, however, that if SMS is active, the following attributes are not copied:

v Optional services code (OPTCD) - for ISAM data sets only

v Block size (BLKSIZE)

v Volume sequence number (VSEQ)

v Data set expiration date (EXPDT)

You can use the LIKE operand even if none of your existing data sets have the

exact attribute values you want to use for a new data set. You can override

attributes copied from a model data set by specifying the LIKE operand and the

operands corresponding to the attributes you want to override on the

ALLOCATE command.

 The following items should be considered when using the LIKE operand:

v NEW is the only valid data set status that can be specified with the LIKE

operand.

v The LIKE operand must be specified with the DATASET operand.

v Only one data set name can be specified on the DATASET/DSNAME

operand.

v With SMS, block size is not copied from the model data set. If you do not

specify the block size, the system determines the optimal block size for the

data set, unless the data set has RECFM(U).

The attributes copied from the model data set override attributes from the

data class.

v If the new data set to be allocated is specified with a member name,

indicating a partitioned data set (PDS), then you are prompted for directory

blocks unless that quantity is explicitly specified on the ALLOCATE command

or defaulted from the LIKE data set.

If the new data set name is specified with a member name, but the model

data set is sequential and you have not explicitly specified the quantity for

directory blocks, then you are prompted for directory blocks.

v If you specify the directory value as zero and the model data set is a

partitioned data set, then the new data set is allocated as a sequential data

set.

v Unless you explicitly code the SPACE operand for the new data set, the

system determines the space to be allocated for the new data set by adding

up the space allocated in the first three extents of the model data set.

ALLOCATE Command

32 z/OS V1R9.0 TSO/E Command Reference

Therefore, the space allocated for the new data set will generally not match

the space that was specified for the model data set. Also, the system

allocates the space for the new data set in tracks.

v Without SMS, the DSNTYPE keyword must be specified in order to allocate a

PDSE data set.

USING(attr_list_name)

specifies the name of a list of attributes that you want to have assigned to the

data set you are allocating. The attributes in the list correspond to, and are

used for, data control block (DCB) operands. (Note to users familiar with batch

processing: These DCB operands are the same as those normally specified by

using JCL and data management macro instructions.)

 An attribute list must be stored in the system before you use this operand. You

can build and name an attribute list by using the ATTRIB command. The

ATTRIB command allocates a file with the name being the (attr_list_name)

specified in the ATTRIB command. The name that you specify for the list when

you use the ATTRIB command is the name that you must specify for this

USING(attr_list_name) operand.

 USING, LIKE, and REFDD are mutually exclusive.

Note: You cannot specify the DCB operands (operands that are also on the

ATTRIB command) with the USING operand.

REFDD(file_name)

if SMS is active, specifies the ddname of an existing data set whose attributes

are copied to the new data set. The following attributes are copied to the new

data set:

v Data set organization (record organization or record format):

– Record organization (RECORG)

– Record format (RECFM)
v Directory space quantity (DIR)

v Record length (LRECL)

v Key length (KEYLEN)

v Key offset (KEYOFF)

v Space allocation:

– AVGREC

– SPACE

– TRACK, CYLINDER, BLOCK

When you allocate a data set with REFDD, specify a disposition of NEW. For

example,

alloc da(’user1.my.text’) fi(dd1) shr reu

alloc f(dd2) da(’user2.your.data’) new refdd(dd1)

USER1.MY.TEXT is an existing and cataloged data set. Note that the block size

(BLKSIZE) is not copied to the new data set USER2.YOUR.DATA.

 The retention period (RETPD) or expiration date (EXPDT) is not copied to the

new data set.

 The LIKE, REFDD, and USING operands are mutually exclusive.

Note: Without SMS, the system syntax checks and ignores the REFDD

operand.

SECMODEL(profile_name[,GENERIC])

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 33

specifies the name of an existing RACF data set profile, the attributes of which

will be copied to the discrete profile. Use SECMODEL when you want a

different RACF data set profile than the default profile selected by RACF, or

when there is no default profile. The model profile can be one of the following

profiles:

v RACF model profile

v RACF discrete data set profile

v RACF generic data set profile

GENERIC identifies that the profile name is a generic data set profile. For

example, if you want to create a generic data set profile, specify

SECMODEL(profile_name,GENERIC).

 The following information from the RACF data set profile is copied to the

discrete data set profile of the new data set:

v OWNER indicates the user or group assigned as the owner of the data set

profile.

v ID indicates the access list of users or groups authorized to access the data

set.

v UACC indicates the universal access authority associated with the data set.

v AUDIT/GLOBALAUDIT indicates which access attempts are logged.

v ERASE indicates that the data set is to be erased when it is deleted

(scratched).

v LEVEL indicates the installation-defined level indicator.

v DATA indicates installation-defined information.

v WARNING indicates that an unauthorized access causes RACF to issue a

warning message, but allows access to the data set.

v SECLEVEL indicates the name of an installation-defined security level.

Note: Without SMS, the system syntax checks and ignores the SECMODEL

operand.

For more information about RACF, see z/OS Security Server RACF Command

Language Reference.

RELEASE

specifies unused space is to be deleted when the data set is closed.

 If you use RELEASE for a new data set with the BLOCK or BLKSIZE operand,

then you must also use the SPACE operand.

ROUND

specifies the allocated space be equal to one or more cylinders. This operand

should be specified only when space is requested in units of blocks. This

operand corresponds to the ROUND operand on the SPACE parameter in JCL.

KEEP | DELETE | CATALOG | UNCATALOG

KEEP

1

specifies the data set is to be retained by the system after it is freed. If the

data set is SMS-managed, KEEP has the same effect as CATALOG.

DELETE

1

specifies the data set is to be deleted after it is freed. If the data set is

SMS-managed, DELETE also forces UNCATALOG.

1. A command processor can modify the final disposition of this operand.

ALLOCATE Command

34 z/OS V1R9.0 TSO/E Command Reference

|
|
|
|
|

CATALOG

1

specifies the data set is to be retained by the system in a catalog after it is

freed.

UNCATALOG

1

specifies the data set is to be removed from the catalog after it is freed. If

the data set is not SMS-managed and you do not want the system to retain

the data set, you must also specify the DELETE operand.

BUFL(buffer_length)

specifies the length, in bytes, of each buffer in the buffer pool. Substitute a

decimal number for buffer_length. The number must not exceed 32,760.

 If you omit this operand and the system acquires buffers automatically, the

BLKSIZE and KEYLEN operands are used to supply the information needed to

establish buffer length.

BUFNO(number_of_buffers)

specifies the number of buffers to be assigned for data control blocks.

Substitute a decimal number for number_of_buffers. The number must never

exceed 255, and you can be limited to a smaller number of buffers depending

on the amount of available virtual storage. The following table shows the

condition that requires you to include this operand.

 When you use one of the following methods of obtaining the buffer pool, then:

 (1) BUILD macro instruction (1) You must specify BUFNO.

(2) GETPOOL macro instruction (2) The system uses the number that you

specify for GETPOOL.

(3) Automatically with BPAM or BSAM (3) You must specify BUFNO if the program

was designed to use buffers obtained

during OPEN.

(4) Automatically with QSAM (4) You may omit BUFNO and accept the

system default, which is five or one, except

with an extended format data set. For more

information see z/OS DFSMS Using Data

Sets.

LRECL({logical_record_length |X | nnnnnK})

specifies the length, in bytes, of the largest logical record in the data set. You

must specify this operand for data sets that consist of either fixed-length or

variable-length records.

 If SMS is active, you can use the DATACLAS operand in place of LRECL to

specify the logical record length. If you specify LRECL, the system determines

the block size.

 The logical record length must be consistent with the requirements of the

RECFM operand and must not exceed the block size (BLKSIZE operand)

except for variable-length spanned records. If you specify:

v RECFM(V) or RECFM(V B), then the logical record length is the sum of the

length of the actual data field plus four bytes for a record descriptor word.

v RECFM(F) or RECFM(F B), then the logical record length is the length of the

actual data fields.

v RECFM(U), then you should omit the LRECL operand.

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 35

LRECL(nnnnnK) allows users of ISO/ANSI extended logical records and QSAM

locate mode users to specify a K multiplier on the LRECL operand. nnnnn can

be a number within 1-16,384. The K indicates that the value is multiplied by one

thousand and twenty-four (1024).

 For variable-length spanned records (VS or VBS) processed by QSAM (locate

mode) or BSAM, specify LRECL (X) when the logical record exceeds 32756

bytes.

NCP(number_of_channel_programs)

specifies the maximum number of READ or WRITE macro instructions allowed

before a CHECK or WAIT macro instruction is issued. The maximum number

must not exceed 255 and must be less than 255 if the address space does not

have enough virtual storage. If you are using chained scheduling, you must

specify an NCP value greater than 1. If you omit the NCP operand, the default

value is 1.

INPUT

specifies a BSAM data set opened for INOUT or a BDAM data set opened for

UPDAT is to be processed for input only. This operand overrides the INOUT

(BSAM) option or UPDAT (BDAM) option in the OPEN macro instruction to

INPUT. This is useful if you only have READ access authority to the data set.

OUTPUT

specifies a BSAM data set opened for OUTIN or OUTINX is to be processed for

output only. This operand overrides the OUTIN option in the OPEN macro

instruction to OUTPUT or the OUTINX option in the OPEN macro instruction to

EXTEND.

EXPDT(year_day)

specifies the data set expiration date. Specify the year and day in one of two

forms:

1. yyddd, where yy is the last two-digit number for the year and ddd is the

three-digit number for the day of the year. The maximum value for the year

is 99 (for 2099). The minimum value for the day is 000 and the maximum

value is 366.

2. yyyy/ddd, where yyyy is the four-digit number for the year and ddd is the

three-digit number for the day of the year. The slash is required. The

maximum value for the year is 2155. The minimum value for the day is000

and the maximum value is 366.

If you specify 99365, 2099/365, 99366, 2099/366, the system retains your data

sets permanently. Do not use those dates as an expiration date. Use them as

“no scratch” dates only. If you code any of these special values after 2099, they

will have the same effect.

 EXPDT is mutually exclusive with RETPD.

 If SMS is active, the expiration date might have been defined by the

DATACLAS operand.

RETPD(number_of_days)

specifies the data set retention period in days. The value can be a one- to

four-digit decimal number. If the system calculates the date as the equivalent of

1999/365 or 1999/366, the system does not use that date. Instead it uses

2000/001.

 RETPD is mutually exclusive with EXPDT.

ALLOCATE Command

36 z/OS V1R9.0 TSO/E Command Reference

|
|
|
|

|
|
|
|

BFALN({F | D})

specifies the boundary alignment of each buffer as follows:

F Each buffer starts on a fullword boundary that might not be a doubleword

boundary.

D Each buffer starts on a doubleword boundary.

 If you do not specify this operand, the system defaults to a doubleword

boundary.

OPTCD(A, B, C, E, F, H, J, Q, R, T, W, and Z or all)

specifies the following optional services that you want the system to perform.

For a detailed discussion of these services, see the OPTCD subparameter of

the DCB parameter in z/OS MVS JCL Reference and z/OS DFSMS Macro

Instructions for Data Sets.

A specifies the actual device addresses be presented in READ and WRITE

macro instructions.

B specifies the end-of-file (EOF) recognition be disregarded for tapes.

C specifies the use of chained scheduling.

E requests an extended search for block or available space.

F specifies feedback from a READ or WRITE macro instruction should return

the device address in the form it is presented to the control program.

H requests the system to check for and bypass embedded VSE checkpoint

records on tape.

J specifies the character after the carriage control character is the table

reference character for that line. The table reference character tells TSO/E

which character arrangement table to select when printing the line.

Q requests the system to translate a magnetic tape from ASCII to EBCDIC or

from EBCDIC to ASCII.

R requests the use of relative block addressing.

T requests the use of the user totaling facility.

W requests the system to perform a validity check when data is written on a

direct access device.

Z requests the control program to shorten its normal error recovery procedure

for input on magnetic tape.

 You can request any or all of the services by combining the values for this

operand. You can combine the characters in any sequence, being sure to

separate them with blanks or commas.

EROPT({ACC | SKP | ABE})

specifies the option you want to execute if an error occurs when a record is

read or written. The options are:

ACC

to accept the block of records in which the error was found.

SKP

to skip the block of records in which the error was found.

ABE

to end the task abnormally.

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 37

BFTEK({S | E | A | R})

specifies the type of buffering that you want the system to use. The types that

you can specify are:

S Simple buffering

E Exchange buffering

A Automatic record area buffering

R Record buffering.

RECFM(A, B, D, F, M, S, T, U, and/or V)

specifies the format and characteristics of the records in the data set. The

format and characteristics must be completely described by one source only. If

they are not available from any source, the default is an undefined-length

record. For a discussion of the formats and characteristics of the RECFM

subparameter of the DCB parameter, see z/OS MVS JCL Reference.

 Use the following values with the RECFM operand:

A indicates the record contains ASCII printer control characters.

B indicates the records are blocked.

D indicates variable-length ASCII records.

F indicates the records are of fixed-length.

M indicates the records contain machine code control characters.

S indicates, for fixed-length records, the records are written as standard

blocks (there must be no truncated blocks or unfilled tracks except for the

last block or track). For variable-length records, a record might span more

than one block. Exchange buffering, BFTEK(E), must not be used.

T indicates the records can be written onto overflow tracks, if required.

Exchange buffering, BFTEK(E), or chained scheduling, OPTCD(C), cannot

be used.

U indicates the records are of undefined-length.

V indicates the records are of variable-length.

 You can specify one or more values for this operand; at least one is required. If

you use more than one value, you must separate each value with a comma or

a space.

 With SMS, the record format for a new data set might have been defined by the

DATACLAS operand.

 RECFM is mutually exclusive with RECORG.

DIAGNS(TRACE)

specifies the Open/Close/EOV trace option that gives a module-by-module trace

of the Open/Close/EOV work area and your DCB.

LIMCT(search_number)

specifies the number of blocks or tracks to be searched for a block or available

space. The number must not exceed 32,760.

BUFOFF({block_prefix_length | L})

specifies the buffer offset. The block prefix length must not exceed 99. L

specifies the block prefix field is four bytes long and contains the block length.

DSORG({DA | DAU | PO | POU | PS | PSU})

specifies the data set organization as follows:

ALLOCATE Command

38 z/OS V1R9.0 TSO/E Command Reference

DA Direct access

DAU Direct access unmovable

PO Partitioned organization

POU Partitioned organization unmovable

PS Physical sequential

PSU Physical sequential unmovable

When you allocate a new data set and you do not specify the DSORG operand,

DSORG defaults to partitioned organization (PO) if you specify a non-zero value

for the DIR operand. If you do not specify a value in the DIR operand, the

system assumes you want a physical sequential (PS) data set. Note that the

system does not store this default DSORG information into the data set until a

program opens and writes to the data set. For more information about data set

organization, see z/OS MVS Programming: Authorized Assembler Services

Guide.

DEN({0 | 1 | 2 | 3 | 4})

specifies the magnetic tape density as follows:

0 200 bpi/7 track

1 556 bpi/7 track

2 800 bpi/7 and 9 track

3 1600 bpi/9 track

4 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent)

TRTCH({C | E | T | ET}, {COMP | NOCOMP})

specifies the recording technique for 7 or 18 track tape as follows:

C Data conversion with odd parity (the default) and no translation (the

default).

E Even parity with no translation (the default) and no conversion (the default).

T Odd parity (the default) and no conversion (the default). BCD to EBCDIC

translation when reading and EBCDIC to BCD translation when writing.

ET

Even parity, and no conversion (the default). BCD to EBCDIC translation

when reading and EBCDIC to BCD translation when writing.

COMP| NOCOMP

specifies whether data sets are to be compressed with IDRC to save space

in tape.

 This operand is mutually exclusive with KEYLEN.

KEYLEN(bytes)

specifies the length in bytes of each of the keys used to locate blocks of

records in the data set when the data set resides on a direct access device.

The key length must not exceed 255 bytes for a record organization of physical

sequential (PS) or partitioned (PO).

 If an existing data set has standard labels, you can omit this operand and let

the system retrieve the key length from the standard label. If a key length is not

supplied by any source before you issue an OPEN macro instruction, a length

of zero (no keys) is assumed. This operand is mutually exclusive with TRTCH.

 If SMS is active, the key length might have been defined by the DATACLAS

operand. If you want to override it, explicitly specify KEYLEN. The number of

bytes is as follows:

v 1 to 255 for a record organization of key-sequenced (RECORG(KS)).

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 39

v 0 to 255 for a record organization of physical sequential (PS) or partitioned

(PO).

KEYOFF(offset)

if SMS is active, specifies the key position (offset) of the first byte of the key in

each record. If you want to specify key offset or override the key offset defined

in the data class (DATACLAS) of the data set, use KEYOFF. Specify KEYOFF

only for a VSAM key-sequenced data set (RECORG(KS)).

Note: Without SMS, the system syntax checks and then ignores the KEYOFF

operand.

RECORG({ES | KS | LS | RR})

if SMS is active, specifies the organization of the records in a new VSAM data

set. If you want to override the record organization defined in the data class

(DATACLAS) of the data set, use RECORG. The types that you can specify are:

ES

specifies a VSAM entry-sequenced data set.

KS

specifies a VSAM key-sequenced data set.

LS

specifies a VSAM linear space data set.

RR

specifies a VSAM relative record data set.

 If you are using DATACLAS in place of RECORG, explicitly specify valid LRECL

and KEYLEN values for a VSAM key-sequenced data set (RECORG(KS)).

 If you do not specify RECORG, SMS assumes a physical sequential (PS) or

partitioned (PO) data set.

 RECORG is mutually exclusive with RECFM.

Note: Without SMS, the system syntax checks and then ignores the RECORG

operand.

PROTECT

specifies the DASD data set or the first data set on a tape volume is to be

RACF protected.

v For a new permanent DASD data set, the specified status must be NEW or

MOD, treated as NEW, and the disposition must be either KEEP, CATALOG,

or UNCATALOG. With SMS, SECMODEL overrides PROTECT.

v For a tape volume, the tape must have an SL, SUL, AL, AUL, or NSL label.

The file sequence number and volume sequence number must be one

(except for NSL), and PRIVATE must be assigned as the tape volume use

attribute.

The PROTECT operand is not valid if a data set name is not specified or if the

FCB operand or status other than NEW or MOD is specified.

COPIES((number)[,group_value])

specifies the total number of copies of the data set to be printed, with an

optional specification on the IBM 3800 printer as to how those copies can be

grouped. Number is a required operand. The number of copies which can be

requested is subject to an installation limit. You can specify up to 8 group

values. For more information, see z/OS MVS JCL Reference.

v Do not specify the COPIES operand with the DATASET operand.

ALLOCATE Command

40 z/OS V1R9.0 TSO/E Command Reference

v SYSOUT is the only valid data set status that you can specify with the

COPIES operand.

BURST | NOBURST

specifies a request for the burster-trimmer-stacker on IBM 3800 or 3900 output.

SYSOUT is the only valid data set status that you can specify with the BURST

operand.

CHARS(table_name)

specifies a request for name or names of character arrangement tables (fonts)

for printing a data set with the IBM 3800 or 3900 printer. You can specify up to

4 table names. The choice of fonts available is determined by your installation

at system generation time. SYSOUT is the only valid data set status that you

can specify with the CHARS operand.

FLASH(overlay_name[,copies])

specifies the name of a forms overlay, which can be used by the IBM 3800 or

3900 Printing Subsystem. The overlay is “flashed” on a form or other printed

information over each page of output. The forms overlay_name must be 1 to 4

alphabetic, numeric, or special characters (#, $, or @). Optionally, you can

specify the number of copies on which the overlay is to be printed. The count

can range from 0 to 255. To flash no copies, specify a count of zero. SYSOUT

is the only valid data set status that you can specify with the FLASH operand.

MODIFY(module_name[:trc])

 specifies the name of a copy modification module, which is loaded into the IBM

3800 or 3900 Printing Subsystem. This module contains predefined data such

as legends, column headers, or blanks, and specifies where and on which

copies the data is to be printed. The IEBIMAGE utiliy program is used to define

and store the module in SYS1.IMAGELIB. The module_name can contain 1 to 4

alphanumeric or special characters (#, $, or @.)

 MODIFY is used with FLASH so that individual pages can be tailored with the

MODIFY operand from the basic form of pages created by the FLASH operand.

 The table reference character (trc) corresponds to the character set(s)

specified on the CHARS operand. Values are 0 for the first table-name, 1 for

the second, 2 for the third, or 3 for the fourth. If trc is not specified, a default

character set is used. If trc is used, CHARS must also be specified.

 SYSOUT is the only valid data set status that you can specify with the MODIFY

operand.

FCB(image_id[| VERIFY | ALIGN])

specifies a forms control buffer (FCB) that is used to store vertical formatting

information for printing, each position corresponding to a line on the form. The

buffer determines the operations of the printer. It specifies the forms control

image to be used to print an output data set on an IBM 3800 printer or 3211

printer. The FCB also specifies the data protection image to be used for the

IBM 3525 card punch. The FCB operand is ignored for SYSOUT data sets on

the 3525 card punch.

 For further information about the forms control buffer, see z/OS DFSMSdfp

Advanced Services, Programming Support for the IBM 3505 Card Reader and

IBM 3525 Card Punch or IBM 3800 Printing Subsystem Programmer’s Guide.

image_id

specifies 1-to-4 alphanumeric or the special characters #, $, or @ that

identify the image to be loaded into the forms control buffer (FCB).

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 41

|
|
|
|
|
|

|
|
|
|

v For a 3211 printer, IBM provides two standard FCB images, STD1 and

STD2. STD1 specifies that 6 lines per inch are to be printed on an 8.5

inch form. STD2 specifies that 6 lines per inch are to be printed on a 11

inch form.

v For a 3800 Printing Subsystem, IBM provides another standard FCB

image, STD3, which specifies output of 80 lines per page at 8 lines per

inch on 11 inch long paper.

STD1 and STD2 (standard FCB images) should not be used as image_ids

for the SYSOUT data set unless established by your installation at system

generation time.

 If the image_id information is incorrectly coded, the default for the 3211

printer is the image currently in the buffer. If there is no image in the buffer,

the operator is requested to specify an image. For the 3800 printer, the

machine default is 6 lines per inch for any size form that is on the printer.

ALIGN

specifies the operator should check the alignment of the printer forms

before the data set is printed. The ALIGN subparameter is ignored for

SYSOUT data sets and is not used by the 3800 printer.

VERIFY

specifies the operator should verify that the image displayed on the printer

is the desired one. The VERIFY subparameter is ignored for SYSOUT data

sets.

FORMS(forms_name)

specifies the name of the form on which the output from the SYSOUT data set

is to be printed. Specify 1-to-4 alphanumeric or the special characters #, $, or

@ for the forms name. SYSOUT is the only valid data set status that you can

specify with the FORMS operand.

OUTDES(output_descriptor_name{,...})

specifies a list of installation-defined output descriptors that were created by

OUTPUT JCL statements in the LOGON procedure or by the TSO/E OUTDES

command. Specifying the OUTDES operand eliminates the need to supply

information related to the printer or the type of printing to be done.

 You can specify up to 128 output descriptors associated with the SYSOUT data

set. Specify 1-to-8 alphanumeric characters for the output descriptor name. The

first character must be alphabetic or one of the special characters #, $, or @.

SYSOUT is the only valid data set status that you can specify with the

OUTDES operand.

 For information about how to create output descriptors using OUTPUT JCL

statements in the LOGON procedure, see z/OS TSO/E Customization. See

“OUTDES command” on page 197 for information about using the TSO/E

OUTDES command to dynamically create output descriptors.

SPIN(UNALLOC | NO)

specifies when the system should make the SYSOUT data set available for

printing.

UNALLOC

specifies that the system should make the SYSOUT data set available for

printing immediately after deallocation.

NO

specifies that the system should make the SYSOUT data set available for

printing when you log off or at the end of the batch job.

ALLOCATE Command

42 z/OS V1R9.0 TSO/E Command Reference

If the SPIN keyword is not specified, ALLOCATE assumes SPIN=UNALLOC.

 When the SPIN keyword is specified, you must also specify UNALLOC or NO. If

you specify a parameter that is not UNALLOC or NO, or the parameter is

missing, ALLOCATE will prompt you to specify the parameter.

 The SPIN keyword specified on the FREE command overrides the SPIN

keyword specified on the ALLOCATE command.

 If the SEGMENT keyword is specified on the ALLOCATE command, the system

prints the SYSOUT data set regardless of the SPIN specification on either the

ALLOCATE command or FREE command.

SEGMENT(page_count)

specifies the number of pages written to the SYSOUT data set before spinoff

processing begins. SEGMENT can be a number, 1-99999. You can use

SEGMENT to allow part of a job’s output to be printed while the job is still

running, or to allow multiple segments of a job’s output to print simultaneously

on multiple printers. See z/OS MVS JCL Reference, for more information about

the SEGMENT keyword.

DSNTYPE(LIBRARY | PDS | HFS | PIPE |LARGE | BASIC | EXTREQ | EXTPREF)

 specifies the type of data set to be allocated.

LIBRARY

specifies a partitioned data set extended (PDSE).

PDS

specifies a partitioned data set (PDS).

HFS

specifies a UNIX file system.

PIPE

specifies a first-in first-out (FIFO) special file, which is also called a named

pipe.

LARGE

specifies a large format sequential data set with the ability to have a size

greater than 65535 tracks on a single volume.

BASIC

specifies a data set that is neither large format nor extended format.

EXTREQ

specifies that the data set must be extended format.

EXTPREF

specifies that the data set should be allocated as extended format, if

possible. If not possible, allocate the data set as BASIC.

 If you omit DSNTYPE, the type of data set is determined by other data set

attributes, the data class for the data set, or an installation default.

UCS(universal_character_set_name)

specifies the universal character set name or font name to be used when

printing SYSOUT data sets. The UCS name can contain up to 4 alphanumeric

characters. If you do not specify the CHARS operand, the system uses the

UCS operand as the default. SYSOUT is the only valid data set status that you

can specify with the UCS operand unless the UNIT operand specified a directly

allocated printer, not a JES-printer.

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 43

WRITER(external_writer_name)

specifies a name for use in processing or selecting a SYSOUT data set. If you

specify the external writer name, the system uses it instead of JES2 or JES3.

The writer name can contain 1 to 8 alphanumeric or special characters #, $, or

@. SYSOUT is the only valid data set status that you can specify with the

WRITER operand.

 A common use of this parameter is to specify the name of an external writer

routine to be used to pass JCL to JES2/JES3. For example:

WRITER(INTRDR)

PATH(pathname)

identifies a UNIX file.

 A pathname consists of the names of the directories from the root to the file

being identified, and the name of the file. The form is /name1/name2/.../
namen.

 A pathname begins with a slash (/). The system treats any consecutive slashes

like a single slash. The pathname can be 2 to 250 characters, including the

initial slash.

 Value for a pathname consists of printable characters from X'40' to X'FE'. A

filename can contain characters outside this range but these characters cannot

be specified in the JCL. Enclose the pathname in apostrophes if it contains any

character other than the following characters:

Uppercase letters Numbers

Special characters (#,$, or @) Slash (/)

Asterisk (*) Plus (+)

Hyphen (-) Period (.)

Ampersand (&)

A pathname is case sensitive. Thus, ’/usr/joe’ and /usr/JOE define two different

files.

 If you specify either OCREAT alone, or OCREAT and OEXCL, on the

PATHOPTS operand and if the file does not exist, MVS performs an open()

function. The options from PATHOPTS, the pathname from the PATH operand,

and the options from PATHMODE (if specified) are used in the open(). MVS

uses the close() function to close the file before the application program

receives control.

 For status group options other than OCREAT and OEXCL, the description in

this book assumes that the application or OPEN macro passes the operands to

the open() function without modification. That is, this application uses dynamic

allocation information retrieval (the DYNALLOC macro) to retrieve the

subparameters specified for PATHOPTS and passes the subparameters to the

open() function or the OPEN macro does the equivalent. The application

program can ignore or modify the information specified in the JCL or on the

ALLOCATE command.

 When the PATH operand is specified on the ALLOCATE command, you can

specify only the following operands when the PATH operand is specified:

v BLKSIZE

v BUFNO

v DSNTYPE

v DUMMY

v FILEDATA

ALLOCATE Command

44 z/OS V1R9.0 TSO/E Command Reference

v LRECL

v NCP

v PATHDISP

v PATHMODE

v PATHOPTS

v RECFM

v TERM

Note: For programs that use a statements with the PATH keyword, do one of

the tasks below:

v Use dynamic allocation information retrieval to obtain the information

specified for PATH, PATHOPTS and PATHMODE, and pass it to the

open() callable service. See z/OS UNIX System Services

Programming: Assembler Callable Services Reference, for details for

using open().

v Use the C/370™ fopen(//dd:) function. fopen() handles the

differences between DD statements with PATH and DSN specified.

See z/OS XL C/C++ Run-Time Library Referencefor details on using

fopen().

v Use the OPEN macro for BSAM, QSAM or VSAM as described in

z/OS DFSMS Using Data Sets.

PATHDISP([normal_disposition] [,abnormal_disposition])

specifies the disposition of a UNIX file upon normal and abnormal (conditional)

TSO/E session termination.

normal_disposition

indicates the disposition of the UNIX file upon normal TSO/E session

termination. Valid values are:

KEEP

specifies that the file should be kept.

DELETE

specifies that the file should be deleted.

abnormal_disposition

indicates the disposition of the UNIX System Services file upon abnormal

(conditional) TSO/E session termination. Valid values are:

KEEP

specifies that the file should be kept.

DELETE

specifies that the file should be deleted.

PATHMODE(file_access_attribute)

specifies the file access attributes when the PATHOPTS operand also specifies

OCREAT.

 If you specify either OCREAT alone, or OCREAT and OEXCL, on the

PATHOPTS operand, and if the file does not exist, then MVS performs an

open() function. The options from PATHOPTS, the pathname from the PATH

operand, and the options from PATHMODE (if specified) are used in the open().

MVS uses the close() function to close the file before the application program

receives control.

 For status group options other than OCREAT and OEXCL, the description in

this book assumes that the application or OPEN macro passes the operands to

the open() function without modification. That is, this application or OPEN

macro uses dynamic allocation information retrieval (the DYNALLOC macro) to

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 45

retrieve the subparameters specified for PATHOPTS and passes the

subparameters to the open() function. The application program can ignore or

modify the information specified in the JCL or on the ALLOCATE command.

 You can specify up to 14 file access attributes; separate each with a comma.

The system treats duplicate specifications as a single specification.

 Subparameter Definition:

SIRUSR

specifies permission for the file owner to read the file.

SIWUSR

specifies permission for the file owner to write the file.

SIXUSR

specifies permission for the file owner to search, if the file is a directory, or

to execute, for any other file.

SIRWXU

specifies permission for the file owner to read, write, and search, if the file

is a directory, or to read, write, and execute, for any other file.

 This value is the bit inclusive OR of SIRUSR, SIWUSR, and SIXUSR.

SIRGRP

specifies permission for users in the file group class to read the file.

SIWGRP

specifies permission for users in the file group class to write the file.

SIXGRP

specifies permission for users in the file group class to search, if the file is a

directory, or to execute, for any other file.

SIRWXG

specifies permission for users in the file group class to read, write, and

search, if the file is a directory, or to read, write, and execute, for any other

file.

 This value is the bit inclusive OR of SIRGRP, SIWGRP, and SIXGRP.

SIROTH

specifies permission for the users in the file other class to read the file.

SIWOTH

specifies permission for users in the file other class to write the file.

SIXOTH

specifies permission for users in the file other class to search, if the file is a

directory, or to execute, for any other file.

SIRWXO

specifies permission for users in the file other class to read, write, and

search, if the file is a directory, or to read, write, and execute, for any other

file.

 This value is the bit inclusive OR of SIROTH, SIWOTH, and SIXOTH.

SISUID

specifies that the system set the user ID of the process to be the same as

the user ID of the file owner when the file is run as a program.

SISGID

specifies that the system set the group ID of the process to be the same as

ALLOCATE Command

46 z/OS V1R9.0 TSO/E Command Reference

the group ID of the file owner when the file is run as a program. The group

ID is taken from the directory in which the file resides.

 When creating a new UNIX file, if you do not code a PATHMODE operand on a

DD statement with a PATH operand, the system sets the permissions to zero,

which prevents access by all users. If the UNIX file already exists, PATHMODE

is checked for syntax but ignored. The permission bits are left as they are set.

PATHOPTS(file_options)

specifies the file access and status used when accessing a file specified on the

PATH operand. You can specify up to 7 file options; separate each with a

comma. The system treats duplicate specifications as a single specification.

Access Group: Status Group:

------------ ------------

(choose only 1) (choose up to 6)

ORDONLY OAPPEND

OWRONLY OCREAT

ORDWR OEXCL

 ONOCTTY

 ONONBLOCK

 OTRUNC

Note: If you specify more than one Access Group, the system ignores them

and uses ORDWR.

If you specify either OCREAT alone, or OCREAT and OEXCL, on the

PATHOPTS operand, and if the file does not exist, then MVS performs an

open() function. The options from PATHOPTS, the pathname from the PATH

operand, and the options from PATHMODE (if specified) are used in the open().

MVS uses the close() function to close the file before the application program

receives control.

 For status group options other than OCREAT and OEXCL, the description in

this book assumes that the application or OPEN macro passes the operands to

the open() function without modification. That is, this application or OPEN

macro uses dynamic allocation information retrieval (the DYNALLOC macro) to

retrieve the subparameters specified for PATHOPTS and passes the

subparameters to the open() function. The application program can ignore or

modify the information specified in the JCL or on the ALLOCATE command.

 Sub-parameter definition:

ORDONLY

specifies this access group so that the program can open the file for

reading.

OWRONLY

specifies that the program can open the file for writing.

ORDWR

specifies that the program can open the file for reading and writing. Do not

use this option for a FIFO special file.

OAPPEND

specifies that the system sets the file offset to the end of the file before

each write, so that data is written at the end of the existing file.

OCREAT

specifies that the system is to create the file. If the file already exists, the

operation fails if OEXCL is specified, and opens the existing file if OEXCL is

not specified.

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 47

OEXCL

specifies that, if the file does not exist, the system is to create it. If the file

already exists, open() fails. Note that the system ignores OEXCL if

OCREAT is not also specified.

ONOCTTY

specifies that, if the PATH operand identifies a terminal device, open() does

not also make the terminal device the controlling terminal of the process

and the session.

ONONBLOCK

specifies the following, depending on the type of file:

v For a FIFO special file with ORDONLY option set:

ONONBLOCK specifies read-only opening of the file. If ONONBLOCK is

not specified, the read-only open() blocks until a process opens the file

for writing.

v For a FIFO special file with OWRONLY option set:

ONONBLOCK specifies that the system immediately process a request

for a write-only open() of the file, if a process has already opened the file

for reading. If the file is not open for reading, the system returns an error.

If ONONBLOCK is not specified, the write-only open() blocks until a

process opens the file for reading.

v For a character special file that supports a nonblocking open():

ONONBLOCK specifies that the system immediately returns if it cannot

open a file because the device is not ready or available. If ONONBLOCK

is not specified, the open() blocks until the device is ready or available.

Specifications of ONONBLOCK has no effect on other file types.

OSYNC

specifies that the system is to move data from buffer storage to permanent

storage before returning control from a callable service that performs a

write.

OTRUNC

specifies that the system is to truncate the file to zero length if all of the

following are true:

v The file specified on the PATH operand exists.

v The file is a regular file.

v The file successfully opened with ORDWR or OWRONLY.

The system does not change the mode and owner. OTRUNC has no effect

on FIFO special files or directories.

FILEDATA(BINARY | TEXT)

controls the data conversion method, performed by the DFSMS/MVS™ Network

File System client, when accessing network files on a different system. The

other system might be OS/390®, AIX, or certain other kinds of systems. The

FILEDATA operand on the ALLOCATE command does not specify the type of

data, but rather the conversion between EBCDIC and ASCII when exchanging

the data between an MVS host and a client workstation.

BINARY

specifies that data is to be processed as is, except possibly for conversion

between record-oriented and byte-stream-oriented.

 If you do not code the FILEDATA operand, the system assigns a default

value of BINARY to the UNIX file.

ALLOCATE Command

48 z/OS V1R9.0 TSO/E Command Reference

TEXT

specifies that data is to be EBCDIC on MVS and ASCII on the workstation.

 See the appropriate DFSMS/MVS publications for more details about the

Network File System client and its conversion methods.

 You need to code the PATH operand together with the FILEDATA operand.

 You can code the FILEDATA operand together with the following ALLOCATE

operands: BLKSIZE, BUFNO, DSNTYPE, DUMMY, LRECL, NCP, PATHDISP,

PATHMODE, PATHOPTS, RECFM.

RLS(NRI | CR)

specifies the level of record sharing, or sharing protocol, for a VSAM data set in

a sysplex. See z/OS DFSMS Using Data Sets, for a description of sharing

protocols and to determine whether your application can run in a sharing

environment without modification.

NRI

specifies no read integrity (NRI). An application can read uncommitted

changes to a data set made by another application.

CR

specifies consistent read (CR). An application can read only committed

changes to a data set made by another application. An application might

require changes if it attempts to read changes to a data set that was

allocated with a specification of CR.

 Do not use any of the following ALLOCATE operands with RLS: BURST,

CHARS, COPIES, DDNAME, DSNTYPE, FLASH, MODIFY, OUTPUT, PATH,

PATHOPTS, PATHMODE, PATHDISP, SEGMENT, SPIN, SYSOUT, UCS.

ALLOCATE command return codes

 Table 3. ALLOCATE command return codes

0 Allocation successful.

12 Allocation unsuccessful. An error message has been issued.

ALLOCATE command examples

Example 1: Allocate your terminal as a temporary input data set

allocate da(*) file(ft01f001)

Example 2: Allocate an existing cataloged data set

Known:

v The name of the data set: MOSER7.INPUT.DATA.
allocate da(input.data) old

Note that you do not have to specify the user ID, MOSER7, as an explicit qualifier.

Example 3: Allocate an existing data set that is not cataloged

Known:

v The data set name: SYS1.PTIMAC.AM

v The volume serial number: B99RS2

v The ddname: SYSLIB

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 49

alloc dataset(’sys1.ptimac.am’) file(syslib) +

volume(b99rs2) shr

Example 4: Allocate a new data set with the attributes of an

existing model data set

Known:

v The name that you want to give the new data set: MOSER7.NEW.DATA

v The name of the model data set: MOSER7.MODEL.DATA
alloc da(new.data) like(model.data)

Example 5: Allocate a new data set that differs from an existing

model data set only in its space allocation

Known:

Known:

v The name that you want to give the new data set: MOSER7.NEW2.DATA

v The name of the model data set: MOSER7.MODEL.DATA

v The desired space attributes for the new data set: primary 10 tracks, secondary 5

tracks
alloc da(new2.data) space(10,5) tracks like(model.data)

Example 6: Allocate a new sequential data set with space

allocated in tracks

Known:

v The new data set name: MOSER7.EX1.DATA

v The number of tracks: 2

v The logical record length: 80

v The DCB block size: 8000

v The record format: fixed block
alloc da(ex1.data) dsorg(ps) space(2,0) tracks lrecl(80) +

blksize(8000) recfm(f,b) new

Example 7: Allocate a new partitioned data set with space

allocated in blocks

Known:

v The new data set name: MOSER7.EX2.DATA

v The block length: 200 bytes

v The logical record length: 100

v The DCB block size: 200

v The number of directory blocks: 2

v The record format: fixed block
alloc da(ex2.data) dsorg(po) block(200) space(10,10) +

lrecl(100) blksize(200) dir(2) recfm(f,b) new

Example 8: Allocate a new sequential data set with default space

quantities

Known:

v The new data set name: MOSER7.EX3.DATA

v The block length: 800 bytes

v The logical record length: 80

v The record format: fixed block
alloc da(ex3.data) block(800) lrecl(80) dsorg(ps) +

recfm(f,b) new

ALLOCATE Command

50 z/OS V1R9.0 TSO/E Command Reference

Example 9: Allocate a new sequential data set using an attribute

list

Known:

v The name that you want to give the new data set: MOSER7.EX4.DATA

v The number of tracks expected to be used: 10

v DCB operands are in an attribute list named: ATRLST1
attrib atrlst1 dsorg(ps) lrecl(80) blksize(3200)

alloc da(ex4.data) new space(10,2) tracks using(atrlst1)

Example 10: Allocate a new sequential data set with space

allocated in blocks and using an attribute list

Known:

v The new data set name: MOSER7.EX5.DATA

v The block length: 1000 bytes

v The DCB attributes taken from attribute list: ATRLST3
attrib atrlst3 dsorg(ps) lrecl(80) blksize(3200)

alloc da(ex5.data) using(atrlst3) block(1000) +

space(20,10) new

Example 11: Allocate a new sequential data set with default

space quantities and using an attribute list

Known:

v The new data set name: MOSER7.EX6.DATA

v The DCB attributes taken from attribute list: ATRLST5
attrib atrlst5 dsorg(ps) lrecl(80) blksize(3200)

alloc da(ex6.data) using(atrlst5) new

Example 12: Allocate a new data set to contain the output from a

program

Known:

v The data set name: MOSER7.OUT.DATA

v The ddname: OUTPUT

v You do not want to hold unused space.
alloc dataset(out.data) file(output) new space(10,2) +

tracks release

Example 13: Allocate an existing multi-volume data set to

SYSDA, with one device mounted for each volume

Known:

v The data set name: MOSER7.MULTIVOL.DATA

v Volumes: D95VL1, D95VL2, D95VL3

v The ddname: SYSLIB
alloc dataset(’moser7.multivol.data’) old parallel +

file(syslib) volume(d95vl1,d95vl2,d95vl3) +

unit(sysda)

Example 14: Allocate an existing data set as the second file of a

standard-label tape

Known:

v The data set name: MOSER7.TAPE1.DATA

v The volume: TAPEVL

v The unit: 3480
alloc dataset(’moser7.tape1.data’) label(sl) +

unit(3480) volume(tapevl) position(2)

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 51

Example 15: Allocate an output data set using the FCB and

COPIES operands to request formatted copies of an output data

set

Known:

v The ddname: OUTPUT

v The FCB image desired: STD1

v The number of copies: 10
alloc file(output) sysout fcb(std1) copies(10)

Example 16: Allocate a new tape data set using the PROTECT

operand to request RACF protection

Known:

v The data set name: MOSER7.TAPE2.DATA

v The volume: TAPEV2

v The unit: 3490
alloc da(tape2.data) unit(3490) label(sl) position(1) +

volume(tapev2) protect new

Example 17: Allocate a new DASD data set using the PROTECT

operand to request RACF protection

Known:

v The data set name: MOSER7.DISK.DATA

v The logical record length: 80

v The DCB block size: 8000

v The record format: fixed block

v The number of tracks: 2
alloc da(disk.data) dsorg(ps) space(2,0) tracks +

lrecl(80) blksize(8000) recfm(f,b) protect new

Example 18: Concatenate some data sets

Known:

v The data set names: A.CLIST, B.CLIST, C.CLIST

v The ddname: SYSPROC
alloc file(sysproc) dataset(a.clist,b.clist,c.clist) +

shr reuse

You cannot directly add another data set to a concatenation. There are two ways to

add another data set to a data set concatenation:

1. Use the FREE command to deallocate or free the data sets in the

concatenation. Then reallocate the entire concatenation, including the data set

to be added, using the ALLOCATE command.

2. Specify the REUSE operand with the ALLOCATE command when you

concatenate. The REUSE operand specifies the file name being allocated is to

be freed and reallocated if it is currently in use.

Example 19: Allocate a data set, defined by a DD statement, as a

SYSOUT data set with output descriptors to be printed on a

specific print form

Known:

v The ddname: PAYROLL

v The output descriptor: PRINTER1

v The print form name: CHEK
alloc f(payroll) sysout forms(chek) outdes(printer1)

ALLOCATE Command

52 z/OS V1R9.0 TSO/E Command Reference

Example 20: Allocate a SYSOUT data set specifying the member

name of an installation-written program that is to write the data

set

Known:

v The ddname: REPORTA

v The writer name: OURWRIT

v The output descriptor: DESCRIPT
alloc f(reporta) sysout writer(ourwrit) outdes(descript)

Example 21: Allocate a SYSOUT data set to be printed in a

specific character set or print font

Known:

v The ddname: REPORTB

v The character set: GOTH

v The output descriptor: DESCRIPT
alloc f(reportb) sysout ucs(goth) outdes(descript)

Example 22: Allocate a SYSOUT data set to make it available for

printing immediately after deallocation

Known:

v The name of the file: SYSPRINT
alloc f(sysprint) sysout spin(unalloc)

Example 23: Allocate a SYSOUT data set specifying the number

of pages to print

Known:

v The name of the file: SYSPRINT

v Desired segment size: 500
alloc f(sysprint) sysout da(*) segment(500)

Example 24: Allocate a SYSOUT data set to be routed to a user

at a remote destination

Known:

v The ddname: FREEDOM

v The destination: NEWYORK

v The user ID: LIBERTY
alloc f(freedom) sysout dest(newyork.liberty)

Example 25: Allocate an OBJECT PDS with a data class of OBJ

The following example assumes that the Storage Management Subsystem (SMS) is

installed and is active.

Known:

v The data set name: SMS.PDS.OBJ

v The data class: OBJ

v The storage class: STANDARD

v The management class: TSO

v The data class attributes: LRECL (80), RECFM (FB), primary quantity (10),

secondary quantity (10), directory blocks (5), AVGSIZE (800)
alloc da(’sms.pds.obj’) new dataclas(obj) storclas(standard)+

mgmtclas(tso)

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 53

Example 26: Override the data class, storage class, management

class operands by explicitly specifying them on the ALLOCATE

command

The following example assumes that SMS is installed and is active.

Known:

v The data set name: SMS.NEW.OBJ

v The data class attributes: LRECL (80), RECFM (FB), primary quantity (10),

secondary quantity (10), directory blocks (5), AVGREC (U), AVGSIZE (6160)
alloc da(’sms.new.obj’) dataclas(pds) storclas(general) +

mgmtclas(temp) new

Example 27: Allocate three data sets using the REUSE operand

Known:

v Data set name: MY.DATA.SET

v MY.DATA.SET on volume STOR03 is cataloged

v MY.DATA.SET on volume STOR99 is uncataloged

1. Allocate MY.DATA.SET on volume STOR03:

alloc file(x) da(my.data.set’) reuse shr

2. Allocate MY.DATA.SET on volume STOR99. The REUSE operand frees the file

x allocation for MY.DATA.SET on volume STOR03 and reallocates file x to

MY.DATA.SET on volume STOR99.

alloc file(x) da(’my.data.set’) reuse shr vol(stor99)

3. Allocate MY.DATA.SET on volume STOR99:

alloc file(x) da(’my.data.set’) reuse shr

This is satisfied by the current allocation which is MY.DATA.SET on volume

STOR99.

Note: REUSE does not free file x and then reallocate file x with MY.DATA.SET on

volume STOR03 because it is satisfied by an existing allocation.

If you want to allocate MY.DATA.SET on volume STOR03, you can either free file

x and then issue the same allocate command or specify volume STOR03 on the

allocation.

Example 28: Allocate a new DASD data set using a

system-determined block size and request space in a quantity of

logical records

The following example assumes that Storage Management Subsystem is installed

and active because of AVGREC. The system-determined block size does not

require SMS.

Release overallocated space down to a track boundary when the data set is closed.

Known:

v The data set name: K9345P.REPORT2

v The logical record length: 133

v The record format: Fixed block ANSI

v The number of logical records: Primary quantity 5000, secondary quantity 500
alloc ds(’k9345p.report2’) new dsorg(ps) recfm(f,b,a) +

lrecl(133) avblock(133) avgrec(u) space(5000,500) release

ALLOCATE Command

54 z/OS V1R9.0 TSO/E Command Reference

Example 29: Allocate an output file, creating it if it does not exist

Known:

v The ddname: OUTPUT

v The pathname: /u/userid/file.dbp

v The disposition: Keep under all circumstances.

v Permissions: Read, write, and execute for the user; no other permissions.
alloc path(’/u/userid/file.dbp’) +

 pathdisp(keep,keep) +

 pathopts(owronly,ocreat) +

 pathmode(sirwxu) +

 file(output)

ALTLIB command

Use the ALTLIB command to:

v Define alternative application-level libraries of REXX execs or CLISTs.

v Indicate that user-, application-, and system-level libraries of REXX execs and

CLISTs are being searched.

v Exclude one or more library levels (user, application, system) from being

searched.

v Reset the search order to the system level.

v Obtain a display of the search order that is in effect.

TSO/E searches the user-, application-, and system-level libraries for REXX execs

or CLISTs that are executed implicitly or when searching for REXX external

functions or subroutines. For more information about implicitly executing execs and

CLISTs, see “EXEC command” on page 130. For more information about REXX

external functions, see z/OS TSO/E REXX Reference.

Search order for libraries

The following table lists the search order of the user-, application-, and system-level

libraries. Also shown are the ddnames associated with each library level. These

ddnames can be allocated either dynamically by the ALLOCATE command or

included as part of a logon procedure.

 Table 4. Library search order

Search

order Library level Associated ddname

1. User REXX exec SYSUEXEC

2. User CLIST SYSUPROC

3. Application REXX exec Define with FILE or DATASET operand

4. Application CLIST Define with FILE or DATASET operand

5. System REXX exec SYSEXEC (installation can define this

ddname)

6. System CLIST SYSPROC

With the defaults that TSO/E provides, and before an ALTLIB command is invoked,

TSO/E searches the system EXEC library (default ddname SYSEXEC) first,

followed by the system CLIST library (ddname SYSPROC). Note that your system

programmer can change this by

v Defining an alternate ddname of SYSEXEC

ALLOCATE Command

Chapter 1. TSO/E commands and subcommands 55

v Indicating that TSO/E is not to search the system-level exec ddname of

SYSEXEC. Then only the system-level CLIST (SYSPROC) is searched.

You can alter the default library search order by using either the ALTLIB command

or the EXECUTIL command.

v Use EXECUTIL to indicate that the system-level exec ddname is to be searched

for the duration of the current REXX language processor environment.

v Use ALTLIB to indicate that the system-level exec ddname is to be searched for

the duration of the current application. ALTLIB always overrides EXECUTIL within

an application.

Use ALTLIB DISPLAY to see which libraries are being searched for.

Using ALTLIB with most applications

With most applications, the ALTLIB command is in effect from the time that the

command is entered until either another ALTLIB command is entered or the TSO/E

session is ended.

Examples of applications where the ALTLIB command remains in effect for the

duration of the session include TSO/E line mode, TMP READY mode, and TSO/E

commands that accept subcommands, such as IPCS. This does not, however,

apply to ISPF, ISPF dialogs, and similar programs.

Using ALTLIB with concurrent applications

TSO/E permits applications that allow users to perform multiple tasks to distinguish

between the set of procedure libraries required to support one task and the set of

procedure libraries required to support a different task.

For example, a user can edit a memo using the ISPF/PDF editor from one logical

screen and interleave that task with the browsing of a dump using the IPCS dialog

from a different logical screen.

Using ALTLIB in ISPF

When you use ALTLIB when ISPF is active, you can define the libraries (user,

application, and system) that are active for each application. Libraries that you

define while running an application are in effect only while that application has

control. When the application completes, the previous libraries (user, application,

and system) are automatically reactivated.

If you are in split-screen mode in ISPF and you issue the ALTLIB command from a

one-screen session, the changes affect only that screen session. The ALTLIB

search order is not valid across split screens.

The libraries that are originally used when an application gets control are

determined through the NEWAPPL and PASSLIB parameters on the ISPF SELECT

service. For more information about the SELECT service, see z/OS ISPF Services

Guide.

When NEWAPPL is specified and PASSLIB is not specified (that is, you want to

isolate the selected function from the application currently in control, but you do not

want to pass library definitions specified with the ALTLIB command and ISPF

LIBDEF service on to the new application), the current set of libraries, if any exist,

are not used by the application being selected. The deactivation of these libraries

ALTLIB Command

56 z/OS V1R9.0 TSO/E Command Reference

takes place BEFORE the application is selected. The current library definitions are

automatically reactivated when the application being selected terminates.

When both NEWAPPL and PASSLIB are specified (that is, you want to isolate the

selected function from the application currently in control and you want to pass

library definitions specified with the ALTLIB command and ISPF LIBDEF service on

to the new application), the current set of libraries, if any exist, are made available

to the selected application. Any changes you make to this set of libraries while this

application is running are in effect only while this application has control. After the

selected application terminates, the original set of libraries is reactivated.

When NEWAPPL and PASSLIB are not specified (that is, you do not want to isolate

the selected function), the current set of libraries remains in effect because the

selected function does not represent a new application. If the selected function

changes any of the library definitions, the changes apply through all select levels of

the application of which the selected function is a part.

ALTLIB within line mode TSO/E works just like an ISPF application. However, if you

use ALTLIB from within line mode TSO/E and start ISPF, the libraries you specified

in line mode TSO/E will not be available until ISPF is terminated.

Using ALTLIB in the IPCS dialog

When you activate the IPCS dialog for a logical screen, the IPCS dialog establishes

an ALTLIB environment with the same search order that is in effect before the first

ALTLIB command is invoked. See “Search order for libraries” on page 55 for the

order in which TSO/E searches the libraries. This environment is used solely for

IPCS dialog processing for the logical screen.

Although the initial environments are similar, the IPCS environment maintains a

separate ALTLIB environment from that of ISPF. IPCS controls separate ALTLIB

environments for each ISPF logical screen in which the IPCS is invoked.

When you direct commands to the IPCS dialog, the EXEC command uses the

ALTLIB environment associated with the ISPF logical screen in which the IPCS

dialog is invoked. When you direct the ALTLIB command to the IPCS dialog,

defining or excluding one or more libraries, only the ALTLIB environment associated

with that IPCS dialog for that logical screen will change.

When you direct commands to ISPF within the IPCS dialog, the EXEC command

uses the ALTLIB environment associated with the particular ISPF application that

IPCS is running. When you direct the ALTLIB command to ISPF, only the ALTLIB

environment associated with that ISPF application will change.

Only the IPCS dialog maintains a separate ALTLIB environment. Native IPCS does

not maintain a separate ALTLIB environment.

Note: Do not use the QUIET option of ALTLIB in the IPCS dialog. IPCS does not

make ISPF services available to TSO/E commands that IPCS invokes.

For more information about using the ALTLIB command when the IPCS dialog is

active, refer to z/OS MVS IPCS User’s Guide, and z/OS MVS IPCS Commands.

Stacking Application-Level library requests

Application-level REXX exec and CLIST requests can be stacked up to eight

requests each. Because the application-level requests are stacked, you can activate

ALTLIB Command

Chapter 1. TSO/E commands and subcommands 57

a REXX exec or CLIST and then reissue the request for the same REXX exec or

CLIST and the first request will still exist. When you stack application-level library

requests for REXX execs or CLISTs, the last application level you activate becomes

the current one. Only the top, or current application-level request is active.

For example, if you activate an application-level CLIST,

altlib activate application(clist) dataset(’userid.ds1’)

and then unconditionally activate another application-level CLIST,

altlib activate application(clist) dataset(’otherid.ds5’) uncond

the second request becomes current and the first request is stacked under it.

If you entered the command, ALTLIB DISPLAY, to display the search order, the

display at your terminal will look similar to the following:

IKJ79322I Current search order (by DDNAME) is:

IKJ79326I Application-level CLIST DDNAME=SYS00027

IKJ79321I Stacked DDNAME=SYS00026

IKJ79327I System-level EXEC DDNAME=SYSEXEC

IKJ79328I System-level CLIST DDNAME=SYSPROC

Deactivate the application-level for CLIST to remove the second request and make

the first request current. Or, you can clear all requests and reset the original library

search order. For example, to clear only the current request issue:

altlib deactivate application(clist)

To clear all stacked application-level requests and leave the user and system levels

as they are, issue:

altlib deactivate application(*)

ALTLIB command syntax

��

ALTLIB
 Application

ACTIVATE

ACT

USER

(

*

)

SYSTEM

EXEC

CLIST

DEACTIVATE

DEACT

APPLICATION

USER

(

*

)

SYSTEM

EXEC

CLIST

ALL

DISPLAY

DISP

DIS

RESET

RES

QUIET

��

Application:

APPLICATION(

EXEC

)

CLIST

Dataset

File

 UNCOND

COND

ALTLIB Command

58 z/OS V1R9.0 TSO/E Command Reference

Dataset:

�

DATASET

DSNAME

(

dsname

)

File:

 FILE (ddname)

DDNAME

LIBRARY

ALTLIB command operands

ACTIVATE | ACT

indicates that you want to include the specified library level when searching for

a REXX exec or CLIST.

DEACTIVATE | DEACT | DEA

indicates that you want to exclude the specified library level when searching for

a REXX exec or CLIST.

DISPLAY | DISP | DIS

requests information about the search order the EXEC command processor

currently uses to find a REXX exec or CLIST.

RESET | RES

resets the libraries searched to system-level REXX execs and CLISTs only.

USER

indicates that the user-level REXX execs and CLISTs are to be activated or

deactivated. User-level REXX execs and CLISTs are those data sets

concatenated to the ddname SYSUPROC for both CLISTs and REXX execs

and the data sets concatenated to ddname SYSUEXEC for REXX execs only.

APPLICATION

indicates that the application-level REXX execs and CLISTs are to be activated

or deactivated. Application-level execs and CLISTs are those data sets defined

with the DATASET or FILE operands.

SYSTEM

indicates that the system-level REXX execs and CLISTs are to be activated or

deactivated. System-level execs and CLISTs are the data sets that are

concatenated to the ddname SYSPROC for both REXX execs and CLISTs or

those data sets that are concatenated to the ddname SYSEXEC for REXX

execs only.

ALL

indicates that you want to deactivate all library levels, user, application, and

system, of REXX execs and CLISTs.

(EXEC)

indicates that you want to activate or deactivate REXX execs at the level you

specify (user, application, or system).

(CLIST)

indicates that you want to activate or deactivate CLISTs at the level that you

specify (user, application, or system).

ALTLIB Command

Chapter 1. TSO/E commands and subcommands 59

(*) indicates that you want to activate or deactivate REXX execs and CLISTs at the

level you specify (user, application, or system).

DATASET(dsname) | DSNAME(dsname)

specifies a data set list to define an application-level library of REXX execs or

CLISTs. When specifying DATASET or DSNAME:

v The data sets must be cataloged partitioned data sets when you issue the

ALTLIB command.

v The maximum number of data sets you can list is fifteen. Use the FILE

operand if you want to specify more than fifteen.

v The data sets must all have the same record format (RECFM).

v If the data sets have different block sizes, you can specify them in any order

of block sizes.

v Member names cannot be specified in the list of data sets.

FILE(ddname) | DDNAME(ddname) | LIBRARY(ddname)

specifies a ddname that defines an application-level library.

v The ddname must be allocated before issuing the ALTLIB command.

v The ddname must be allocated with the permanently allocated attribute to

ensure that the system does not automatically deallocate the ddname when

the allocation control limit is exceeded. Note that the data sets allocated in a

LOGON procedure or by the ALLOCATE command are automatically

allocated with this attribute, however, if you access dynamic allocation

directly, using SVC 99, you need to specify this attribute. For more

information about the permanently allocated attribute, see z/OS MVS

Programming: Authorized Assembler Services Guide.

v To avoid errors when the EXEC command runs, specify only cataloged

partitioned data sets.

UNCOND | COND

UNCOND

activates the specified application-level library even if another

application-level library of the same type, CLIST or REXX exec, is active

within the current application. Up to eight application-level CLIST and REXX

exec requests can be stacked. (See Stacking Application-Level library

requests for an explanation of stacking.)

COND

activates the specified application-level library only if another

application-level library of the same type, CLIST or REXX exec, is not

active within the current application. If you issue the ALTLIB command with

the COND keyword and there is already an application-level library in effect,

a message is displayed and a non-zero return code is set.

QUIET

indicates that you want messages saved and not displayed at the terminal.

Messages can be saved in the ISPF shared pool when QUIET is used and

ISPF is active. Variable IKJADM1 contains the first message, variable IKJADM2

contains the second message, and so on. Variable IKJADM contains the

number of messages returned for the invocation of ALTLIB according to these

rules:

v If you specify ALTLIB with QUIET, IKJADM is reset to the number of

messages returned for that invocation of ALTLIB.

v If you do not specify the QUIET operand, IKJADM is not reset. It equals the

number of messages returned for the last invocation of ALTLIB with QUIET.

ALTLIB Command

60 z/OS V1R9.0 TSO/E Command Reference

v QUIET takes effect after TSO/E determines that the ALTLIB command is

syntactically correct. If the command is not syntactically correct, then IKJADM

equals 0 and a return code of 20 is returned indicating a syntax error.

QUIET saves up to 99 messages.

 IKJADM1 echoes the command entered in IKJADM1. For example,

IKJADM = 4

IKJADM1= ALTLIB DISPLAY QUIET

IKJADM2= IKJ79322I Current search order (by DDNAME) is:

IKJADM3= IKJ79327I System-level EXEC DDNAME=SYSEXEC

IKJADM4= IKJ79328I System-level CLIST DDNAME=SYSPROC

REXX execs and CLISTs may use the variables IKJADM and IKJADM1 -

IKJADM99 as in this example:

/* REXX */

ADDRESS TSO "ALTLIB DISPLAY QUIET"

ADDRESS ISPEXEC "VGET (IKJADM IKJADM1 IKJADM2 IKJADM3 IKJADM4) SHARED"

SAY ’IKJADM = ’IKJADM

SAY ’IKJADM1=’IKJADM1

SAY ’IKJADM2=’IKJADM2

SAY ’IKJADM3=’IKJADM3

SAY ’IKJADM4=’IKJADM4

If you use a program that invokes ALTLIB with the QUIET operand, you must

take the following into consideration: ALTLIB declares IKJADM as a fixed binary

integer, four bytes long. IKJADM1 - 99 are character format, 251 bytes long. If

QUIET is in effect and you invoke ALTLIB from a program, messages are not

displayed, but they are available to the program.

Note: Do not use the QUIET option of ALTLIB in the IPCS dialog. IPCS does not

make ISPF services available to TSO/E commands that IPCS invokes.

ALTLIB command return codes

 Table 5. ALTLIB command return codes

0 Processing successful. Informational messages might have been issued.

4 An alternative library does not exist for this type (REXX exec or CLIST);

none deactivated.

8 An application-level library already exists for this type (REXX exec or

CLIST). The new application-level library was not activated. Issued only

when you specify the COND parameter.

10 User- or system-level CLIST activated; User- or system-level exec

cannot be activated because a REXX language processor environment

has not been established. Contact your system programmer to diagnose

problems with TSO/E programs IRXECUSP and IRXINIT.

16 A required ddname was not previously allocated.

20 Severe error. More information is contained in messages.

ALTLIB command examples

Example 1

Operation: Search for CLISTs in a user-level library before application- or

system-level libraries. First allocate a user-level ddname, then activate the

user-level CLISTs.

ALTLIB Command

Chapter 1. TSO/E commands and subcommands 61

allocate fi(sysuproc) da(’id.clist’) shr reu

altlib activate user(clist)

Example 2

Operation: Display the search order currently used to find a REXX exec or CLIST.

altlib display

The output at your terminal might be similar to the following:

IKJ79322I Current search order (by DDNAME) is:

IKJ79327I System-level EXEC DDNAME=SYSEXEC

IKJ79328I System-level CLIST DDNAME=SYSPROC

Example 3

Operation: Define an application-level CLIST library even if another

application-level CLIST library exists, and request that messages are not to be

displayed.

altlib activate application(clist) dataset(clist.name) uncond quiet

ATTRIB command

Use the ATTRIB command to build a list of attributes for non-VSAM data sets that

you intend to allocate dynamically. During the remainder of your terminal session,

you can have the system refer to this list for data set attributes when you enter the

ALLOCATE command. The ALLOCATE command converts the attributes into DCB

operands and LABEL operands for data sets being allocated. Refer to the

subparameters of the DCB parameter in z/OS MVS JCL Reference.

The ATTRIB command allocates a file with the same name as your attr_list_name.

You can use the LISTALC command with the STATUS operand to list your active

attribute lists. The data set name is NULLFILE, which is also the data set name for

files allocated with the DUMMY operand of the ALLOCATE command. Because this

is a NULLFILE allocation, it is subject to use and modification by other commands.

Therefore, it is advisable to allocate those data sets for which the attribute list was

built before you issue any commands that might cause NULLFILE allocation, such

as LINK or RUN.

With the LIKE operand and the DCB operands on the ALLOCATE command, you

do not have to use the ATTRIB command.

ATTRIB command syntax

�� ATTRIB

ATTR
 attr_list_name

BLKSIZE(blocksize)
 �

�
BUFL(buffer_length)

BUFNO(number_of_buffers)
 �

�
LRECL(

logical_record_length

)

x

nnnnnK

NCP(no._of_channel_programs)
 �

ALTLIB Command

62 z/OS V1R9.0 TSO/E Command Reference

�
INPUT

OUTPUT

EXPDT(year_day)

RETPD(no._of_days)

BFALN(

F

)

D

 �

�

�

,

OPTCD(

A

)

B

C

E

F

H

J

Q

R

T

W

Z

EROPT(

ACC

)

SKP

ABE

BFTEK(

S

)

E

A

R

 �

�

�

,

RECFM(

A

)

B

D

F

M

S

T

U

V

DIAGNS(TRACE)

LIMCT(search_number)
 �

�
BUFOFF(

block_prefix_length

)

L

DSORG(

DA

)

DAU

PO

POU

PS

PSU

 �

�
DEN(

0

)

1

2

3

4

NOCOMP

TRTCH(

C

)

E

COMP

T

ET

KEYLEN(key_length)

 ��

ATTRIB command operands

attr_list_name

specifies the name for the attribute list. You can specify this name later as an

operand of the ALLOCATE command. The name must consist of 1 to 8

alphanumeric and the special characters #, $, or @, or both must begin with an

alphabetic or special character, and must be different from all other attribute list

names and ddnames that exist during your terminal session.

ATTRIB Command

Chapter 1. TSO/E commands and subcommands 63

BLKSIZE(blocksize)

specifies the block size for the data sets. The block size must be a decimal

number and must not exceed 32760 bytes.

 The block size you specify must be consistent with the requirements of the

RECFM operand. If you specify:

v RECFM(F), then the block size must be equal to or greater than the logical

record length.

v RECFM(F B), then the block size must be an integral multiple of the logical

record length.

v RECFM(V), then the block size must be equal to or greater than the largest

block in the data set. For unblocked variable-length records, the size of the

largest block must allow space for the four-byte block descriptor word in

addition to the largest logical record length. The logical record length must

allow space for a four-byte record descriptor word.

v RECFM(V B), then the block size must be equal to or greater than the

largest block in the data set. For block variable-length records, the size of the

largest block must allow space for the four-byte block descriptor word in

addition to the sum of the logical record lengths that will go into the block.

Each logical record length must allow space for a four-byte record descriptor

word. Because the number of logical records can vary, you must estimate the

optimum block size and the average number of records for each block based

on your knowledge of the application that requires the I/O.

v RECFM(U), then the block size can be any value up to what is supported by

the device or 32760, whichever is smaller. If allocated to a TSO/E terminal

and BLKSIZE(80) is coded, then one character (the last byte) is reserved for

an attribute character.

BUFL(buffer_length)

specifies the length, in bytes, of each buffer in the buffer pool. Specify a

decimal number for buffer_length. The number must not exceed 32760.

 If you omit this operand and the system acquires buffers automatically, the

BLKSIZE and KEYLEN operands are used to supply the information needed to

establish buffer length.

BUFNO(number_of_buffers)

specifies the number of buffers to be assigned for data control blocks. Specify a

decimal number for number_of_buffers. The number must not exceed 255. You

might be limited to a smaller number of buffers depending on the limit

established at your installation. The following table shows the condition that

requires you to include this operand.

 When you use one of the following methods of obtaining the buffer pool, then:

 (1) BUILD macro instruction (1) You must specify BUFNO.

(2) GETPOOL macro instruction (2) The system uses the number that you

specify for GETPOOL.

(3) Automatically with BPAM or BSAM (3) You must specify BUFNO if the program

was designed to use buffers obtained

during OPEN.

(4) Automatically with QSAM (4) You may omit BUFNO and accept the

system default, which is five or one, except

with an extended format data set. For more

information see z/OS DFSMS Using Data

Sets.

ATTRIB Command

64 z/OS V1R9.0 TSO/E Command Reference

LRECL(logical_record_length)

specifies the length, in bytes, of the largest logical record in the data set. You

must specify this operand for data sets that consist of either fixed-length or

variable-length records.

 If the data set contains undefined-length records, omit this operand.

 The logical record length must be consistent with the requirements of the

RECFM operand and must not exceed the block size (BLKSIZE operand),

except for variable-length-spanned records. If you specify:

v RECFM(V) or RECFM(V B), then the logical record length is the sum of the

length of the actual data fields plus four bytes for a record descriptor word.

v RECFM(F) or RECFM(F B), then the logical record length is the length of the

actual data fields.

v RECFM(U), then you should omit the LRECL operand.

LRECL(NNNNNK) allows users of ISO/ANSI extended logical records and

QSAM locate mode users to specify a K multiplier on the LRECL operand.

NNNNN can be within 1-16,384. The K indicates that the value can be

multiplied by 1024.

 For variable-length spanned records (VS or VBS) processed by QSAM (locate

mode) or BSAM, specify LRECL (X) when the logical record exceeds 32756

bytes.

NCP(number_of_channel_programs)

specifies the maximum number of READ or WRITE macro instructions allowed

before a CHECK macro instruction is issued. The maximum number must not

exceed 255 and must be less than 255 if the address space does not have

enough virtual storage. If you want to use chained scheduling, you must specify

an NCP value greater than 1. If you omit the NCP operand and the application

program does not specify the MULTSDN parameter on the DCBE macro, the

default value is 1. Note that the MULTSDN has nor effect while running

DFSMS/MVS on earlier releases than release 1.

INPUT | OUTPUT

INPUT

specifies a BSAM data set opened for INOUT or a BDAM data set opened

for UPDAT is to be processed for input only. This operand overrides the

INOUT (BSAM) option or UPDAT (BDAM) option in the OPEN macro

instruction to INPUT. This is useful if you only have READ access authority

to the data set.

OUTPUT

specifies a BSAM data set opened for OUTIN or OUTINX is to be

processed for output only. This operand overrides the OUTIN option in the

OPEN macro instruction to OUTPUT or the OUTINX option in the OPEN

macro instruction to EXTEND.

EXPDT(year_day)

specifies the data set expiration date. Specify the year and day in one of two

forms:

1. yyddd, where yy is the last two-digit number for the year and ddd is the

three-digit number for the day of the year. The maximum value for the year

is 99 (for 1999). The minimum value for the day is 000 and the maximum

value is 366.

ATTRIB Command

Chapter 1. TSO/E commands and subcommands 65

If you specify 99365 or 99366, the system retains your data sets

permanently. Do not use those dates as an expiration date. Use them as

″no scratch″ dates only.

2. yyyy/ddd, where yyyy is the four-digit number for the year and ddd is the

three-digit number for the day of the year. The slash is required. The

maximum value for the year is 2155. The minimum value for the day is 000

and the maximum value is 366.

If you specify 1999/365 or 1999/366, the system retains your data sets

permanently. Do not use those dates as an expiration date. Use them as ″no

scratch″ dates only. If you code any of these special values after 1999, they will

have the same effect.

 If SMS is active, the expiration date might have been defined by the

DATACLAS operand.

RETPD(number_of_days)

specifies the data set retention period in days. The value can be a one- to

four-digit decimal number. If the system calculates the date as the equivalent of

1999/365 or 1999/366, the system does not use that date. Instead it uses

2000/001.

BFALN({F | D})

specifies the boundary alignment of each buffer as follows:

D Each buffer starts on a doubleword boundary.

F Each buffer starts on a fullword boundary that might not be a doubleword

boundary.

 If you do not specify this operand and it is not available from any other source,

then data management routines assign a doubleword boundary.

OPTCD(A, B, C, E, F, H, J, Q, R, T, W, and Z or all)

specifies the following optional services that you want the system to perform.

See the OPTCD subparameter of the DCB parameter in z/OS MVS JCL

Reference.

A specifies actual device addresses be presented in READ and WRITE macro

instructions.

B specifies the end-of-file (EOF) recognition be disregarded for tapes.

C specifies the use of chained scheduling.

E requests an extended search for block or available space.

F specifies feedback from a READ or WRITE macro instruction should return

the device address in the form it is presented to the control program.

H requests the system to check for and bypass.

J specifies the character after the carriage control character is the table

reference character for that line. The table reference character tells TSO/E

which character arrangement table to select when printing the line.

Q requests the system to translate a magnetic tape from ASCII to EBCDIC or

from EBCDIC to ASCII.

R requests the use of relative block addressing.

T requests the use of the user totaling facility.

W requests the system to perform a validity check when data is written on a

direct access device.

ATTRIB Command

66 z/OS V1R9.0 TSO/E Command Reference

Z requests the control program to shorten its normal error recovery procedure

for input on magnetic tape.

 You can request any or all of the services by combining the values for this

operand. You may combine the characters in any sequence, being sure to

separate them with blanks or commas.

EROPT({ACC | SKP | ABE})

specifies the option that you want to enter if an error occurs when a record is

read or written. The options are:

ACC to accept the block of records in which the error was found.

SKP to skip the block of records in which the error was found.

ABE to end the task abnormally.

BFTEK({S, E, A, R})

specifies the type of buffering that you want the system to use. The types that

you can specify are:

S Simple buffering

E Exchange buffering

A Automatic record area buffering

R Record buffering

RECFM(A, B, D, F, M, S, T, U, and/or V)

specifies the format and characteristics of the records in the data set. The

format and characteristics must be completely described by one source only. If

they are not available from any source, the default is an undefined-length

record. For a discussion of the formats and characteristics of the RECFM

subparameter of the DCB parameter, see z/OS MVS JCL Reference.

 Use the following values with the RECFM operand:

A indicates the record contains ASCII printer control characters.

B indicates the records are blocked.

D indicates variable-length ASCII records.

F indicates the records are of fixed-length.

M indicates the records contain machine code control characters.

S indicates, for fixed-length records, the records are written as standard

blocks (there must be no truncated blocks or unfilled tracks except for the

last block or track). For variable-length records, a record might span more

than one block. Exchange buffering, BFTEK(E), must not be used.

T indicates the records can be written onto overflow tracks, if required.

Exchange buffering, BFTEK(E), or chained scheduling, OPTCD(C), cannot

be used.

U indicates the records are of undefined-length.

V indicates the records are of variable-length.

 You can specify one or more values for this operand; at least one is required. If

you use more than one value, you must separate each value with a comma or

a space.

ATTRIB Command

Chapter 1. TSO/E commands and subcommands 67

With SMS, the record format for a new data set might have been defined by the

DATACLAS operand.

 RECFM is mutually exclusive with RECORG.

DIAGNS(TRACE)

specifies the Open/Close/EOV trace option that gives a module-by-module trace

of the Open/Close/EOV work area your DCB.

LIMCT(search_number)

specifies the number of blocks or tracks to be searched for a block or available

space. The number must not exceed 32,760.

BUFOFF({block_prefix_length | L})

specifies the buffer offset. The block prefix length must not exceed 99. L is

specified if the block prefix field is four bytes long and contains the block length.

DSORG({DA, DAU, PO, POU, PS, PSU})

specifies the data set organization as follows:

DA Direct access

DAU Direct access unmovable

PO Partitioned organization

POU Partitioned organization unmovable

PS Physical sequential

PSU Physical sequential unmovable

DEN({0 | 1 | 2 | 3 | 4})

specifies the magnetic tape density as follows:

0 200 bpi/7 track

1 556 bpi/7 track

2 800 bpi/7 and 9 track

3 1600 bpi/9 track

4 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent)

TRTCH({C | E | T | ET}, {COMP | NOCOMP})

specifies the recording technique for 7 or 18 track tape as follows:

C Data conversion with odd parity (the default) and no translation (the

default).

E Even parity with no translation (the default) and no conversion (the default).

T Odd parity (the default) and no conversion (the default). BCD to EBCDIC

translation when reading and EBCDIC to BCD translation when writing.

ET

Even parity, and no conversion (the default). BCD to EBCDIC translation

when reading and EBCDIC to BCD translation when writing.

COMP | NOCOMP

specifies whether data sets are to be compressed to save space.

 This operand is mutually exclusive with KEYLEN.

KEYLEN(bytes)

specifies the length, in bytes, of each of the keys used to locate blocks of

records in the data set when the data set resides on a direct access device.

The key length must not exceed 255 bytes. If an existing data set has standard

labels, you can omit this operand and let the system retrieve the key length

ATTRIB Command

68 z/OS V1R9.0 TSO/E Command Reference

|

||
|

||

||
|

|
|
|

|
|

|

from the standard label. If a key length is not supplied by any source before you

issue an OPEN macro instruction, a length of zero (no keys) is assumed. This

operand is mutually exclusive with TRTCH.

ATTRIB command return codes

 Table 6. ATTRIB command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

ATTRIB command examples

Example 1

Operation: Create a list of attributes to be assigned to a data set when the data set

is allocated.

Known:

The following attributes correspond to the DCB operands that you want assigned to

a data set.

v Optional services: Chained-scheduling, user totaling

v Expiration date: Dec. 31, 1985

v Record format: Variable-length spanned records

v Error option: Abend when READ or WRITE error occurs

v Buffering: Simple buffering

v Boundary alignment: Doubleword boundary

v Logical record length: Records may be larger than 32756 bytes

v Name of the attribute list: DCBPARMS
attr dcbparms optcd(c t) expdt(85365) recfm(v s) -

eropt(abe) bftek(s) bfaln(d) lrecl(x)

Example 2

Operation: This example shows how to create an attribute list, how to use the list

when allocating two data sets, and how to free the list so that it cannot be used

again.

Known:

v The name of the attribute list: DSATTRS

v The attributes: EXPDT(99365) BLKSIZE(24000) BFTEK(A)

v The name of the first data set: FORMAT.INPUT

v The name of the second data set: TRAJECT.INPUT
attrib dsattrs expdt(99365) blksize(24000) -

bftek(a)

allocate dataset(format.input) new block(80) -

space(1,1) volume(111111) using(dsattrs)

alloc da(traject.input) old bl(80) volume(111111) -

using(dsattrs)

free attrlist(dsattrs)

ATTRIB Command

Chapter 1. TSO/E commands and subcommands 69

CALL command

Use the CALL command to load and execute a program that exists in executable

(load module or program object) form. The program can be user-written or it can be

a system module such as a compiler, sort, or utility program.

You must specify the name of the program (load module or program object) to be

processed except in those situations where the CALL command assumes module

“TEMPNAME”. The program specified must be a member of a partitioned data set

(PDS) or a partitioned data set extended (PDSE).

You can specify a list of parameters to be passed to the specified program. The

system formats this data so that when the program receives control, register 1

contains the address of a fullword. The three low-order bytes of this fullword contain

the address of a halfword field. This halfword field is the count of the number of

bytes of information contained in the parameter list. The parameters immediately

follow the halfword field.

When you pass parameters to a PL/I program, precede them with a slash (/). PL/I

assumes that any value before the slash is a run time option.

When you pass parameters to a C program, precede them with a slash (/) only if

you have specified the EXECOPS run time option; otherwise, the slash character

will be included in the characters passed as parameters.

If the program terminates abnormally, you are notified of the condition and may

enter a TEST command to examine the failing program.

CALL command in the background

Service aids, utilities, and other programs obtaining their input from an allocated file

such as SYSIN must have the input in a data set or a job stream data set (one

which contains the JCL to run the job and the data itself). After the data set is

created, you can use the CALL command to execute the program that accesses the

SYSIN data. Figure 1 illustrates the allocation and creation of input data sets.

Information about command processing in the foreground and background is

described in z/OS TSO/E User’s Guide.

//EXAMP1 EXEC PGM=IKJEFT01,DYNAMNBR=20

//SYSTSPRT DD SYSOUT=A

//SYSTSIN DD *

 profile prefix(user1)

 allocate file (sysprint) dataset(*)

 allocate file(sysin) altfile(inputdd)

 call (prog1)

 allocate file(sysin) altfile(inputdd2) reuse

 call (prog2)

 free all

//INPUTDD DD *

 input to prog1

//INPUTDD2 DD *

 input to prog2

/*

Figure 1. Allocating and creating input data sets in the background

CALL Command

70 z/OS V1R9.0 TSO/E Command Reference

Note: Allocating the input file to a terminal results in an I/O error message.

Abnormal termination occurs when the program tries to get input from the

terminal.

CALL command syntax

��

CALL
 *

dsname

(member_name)

'parameter_string'

 CAPS

ASIS

�

�
 NOENVB

PASSENVB

��

CALL command operands

dsname

specifies the name of a PDS or a PDSE from which the program is to be

executed. If dsname is not fully qualified, it is assumed to be

’prefix.dsname.LOAD’.

* specifies that CALL should use the standard load module search sequence for

the member name.

(member_name)

specifies the program name to be executed. When you specify only a

member_name, the fully—qualified dsname and member_name, it is assumed

to be ’prefix.LOAD(member_name)’. If member_name, is not specified, the

member ’TEMPNAME’ is assumed.

Note: CALL command processing allocates the data set you specify and then

accesses the member:

1. When allocating the data set, it is possible that the cataloged version

of the data set will not be used, but rather a different copy that has

already been allocated in your TSO/E session. For information about

how MVS dynamic allocation may convert an existing allocation, refer

to z/OS MVS Programming: Authorized Assembler Services Guide.

2. When giving control to the program, the data set you specify on the

CALL command is established as a task library. The tasklib is

effective for the execution of the CALL command.

parameter_string

specifies up to 100 characters of information that you want to pass to the

program as a parameter string. The character string can contain DBCS

characters that you delimit with shift-out (X'0E') and shift-in (X'0F') characters.

 The program to be executed receives parameters according to the standard

linkage conventions. These are the same conventions that will apply if the

program was executed by batch job control language (JCL) and a parameter

string was passed by the EXEC statement with the PARM keyword.

 Some utilities accept multiple entry parameter lists; for example, to pass a list of

alternate ddnames, TSO/E commands require a special multiple entry

parameter list known as a command processor parameter list (CPPL). Neither

of these options are supported by the CALL command, whose primary purpose

CALL Command

Chapter 1. TSO/E commands and subcommands 71

is to support the execution of programs written for a batch processing

environment rather than a TSO/E environment.

ASIS | CAPS

ASIS

prevents translation of a parameter list to uppercase characters. Use ASIS

for programs that accept mixed case characters in a parameter list; the

CALL command will not alter the parameters in any way when the ASIS

option is specified.

CAPS

translates the parameter list to uppercase characters. CAPS is the default.

PASSENVB | NOENVB

PASSENVB

passes the currently active REXX environment block (ENVBLOCK) address

to the invoked program in register 0. The currently active REXX

ENVBLOCK is obtained from the environment to which the CALL command

is directed. See “Example 6” on page 73 and “Example 7” on page 73 for

uses of PASSENVB in REXX execs. This operand is:

v recognized for unauthorized programs and non-isolated environments

v ignored for authorized programs and isolated environments.

For a description of isolated environments, refer to z/OS TSO/E

Programming Services. For further information about the REXX

environment block refer to z/OS TSO/E REXX Reference.

NOENVB

does not pass a REXX environment block (ENVBLOCK) address. The

contents of register 0 on entry to the invoked program are unpredictable.

NOENVB is the default.

CALL command return codes

 Table 7. CALL command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Other Return code is from the called program.

CALL command examples

Example 1

Operation: Start a load module.

Known:

v The name of the load module: JUDAL.PEARL.LOAD(TEMPNAME)

v Parameters: 10,18,23
call pearl ’10,18,23’

Example 2

Operation: Start a load module.

Known:

v The name of the load module: JUDAL.MYLIB.LOAD(COS1)
call mylib(cos1)

CALL Command

72 z/OS V1R9.0 TSO/E Command Reference

Example 3

Operation: Start a PL/I load module passing a parameter.

Known:

v The name of the load module: D58ABC.PCP.LOAD(MOD1)

v The parameter to be passed: The character string ABC
call ’d58abc.pcp.load(mod1)’ ’/abc’

Example 4

Operation: Start a C load module passing a parameter list in mixed case. The

called program will accept the parameters as passed.

Known:

v The name of the load module: C58ABC.C.LOAD(MOD1)

v The parameter to be passed: The character string ‘a BcD’

v The NOEXECOPS option is specified so there is no need to precede the

parameter list with a slash character.
call ’C58abc.c.load(mod1)’ ’a BcD’ asis

Example 5

Operation: Start a C load module passing a parameter list with run time options.

The EXECOPS run time option must be specified.

Known:

v The name of the load module: C58ABC.C.LOAD(MOD1)

v The parameter to be passed: The character string ‘a bcd’
call ’C58abc.c.load(mod1)’ ’NOTEST /a bcd’

Example 6

Operation: Start an ASM load module from a REXX exec passing the REXX

environment block address to the ASM program in register 0.

Known:

v The name of the load module: STEVE.LOAD(PGM)
/* REXX */

address tso "CALL ’STEVE.LOAD(PGM)’ PASSENVB"

Example 7

Operation: Start an ASM load module from a REXX exec invoked under IPCS.

Known:

v The name of the load module: STEVE.LOAD(PGM)

v The name of the REXX exec: STEVE.EXEC(RUNIT)
/* REXX */

address tso "ISPSTART PGM(BLSG) PARM(CMD(RUNIT))"

/* REXX exec RUNIT */

address ipcs "CALL ’STEVE.LOAD(PGM)’ PASSENVB"

For further information concerning IPCS, refer to z/OS MVS IPCS User’s Guide.

CALL Command

Chapter 1. TSO/E commands and subcommands 73

CANCEL command

Use the CANCEL command to halt processing of batch jobs that you have

submitted from your terminal. A READY message is displayed at your terminal if the

job has been canceled successfully. A message is also displayed at the system

operator’s console when a job is canceled.

CANCEL is a foreground-initiated-background (FIB) command. You must have

authorization from installation management to use CANCEL. This command is

generally used with the SUBMIT, STATUS, and OUTPUT commands.

Requesting an attention interrupt after issuing a CANCEL command might terminate

that command’s processing. In this case, you cannot resume CANCEL processing

by pressing the Enter key as you can after most attention interrupts.

CANCEL command syntax

��

CANCEL

�

,

(

jobname

)

(jobname)

NOPURGE

PURGE

��

CANCEL command operands

(jobname (jobid))

specifies the names of the jobs that you want to cancel. The job names must

consist of your user identification plus 1 to 8 alphanumeric characters. However,

if your installation has replaced the default IBM-supplied CANCEL exit, you may

be allowed to specify different job names.

 The optional job ID subfield can consist of 1 to 8 alphanumeric characters. The

first character must be alphabetic or one of the special characters (#, $, or @).

The job ID is a unique job identifier assigned by the job entry subsystem (JES)

at the time the job was submitted to the batch system. Currently the only valid

forms of job identifiers (jobid) assigned by JES are:

v JOBnnnnn or Jnnnnnnn - Jobs

v STCnnnnn or Snnnnnnn - Started Tasks

v TSUnnnnn or Tnnnnnnn - TSO Users

The job ID is needed if you have submitted two jobs with the same name.

 Note the following:

v When you specify a list of several job names, you must separate the job

names with standard delimiters and you must enclose the entire list within

parentheses.

v Jobs controlled by the subsystems are considered started tasks and cannot

be canceled by the CANCEL command.

v If your installation uses security labels and security checking, each job has a

security label associated with it. You may submit a job at a greater security

label than you are currently logged on with provided that you are defined to

that security label. However, to cancel a job, the security label you are

logged on with must be equal to or greater than the security label that the job

was submitted at.

NOPURGE | PURGE

CANCEL Command

74 z/OS V1R9.0 TSO/E Command Reference

NOPURGE

specifies jobs are to be canceled if they are in execution, but output

generated by the jobs remains available. If the jobs have executed, the

output remains available.

PURGE

specifies the job and its output (on the output queue) are to be purged from

the system.

CANCEL command return codes

 Table 8. CANCEL Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

CANCEL command examples

Example 1

Operation: Cancel a batch job.

Known:

v The name of the job: JE024A1
cancel je024a1

Example 2

Operation: Cancel several batch jobs.

Known:

v The names of the jobs: D58BOBTA D58BOBTB(J51) D58BOBTC
cancel (d58bobta d58bobtb(j51) d58bobtc)

DELETE command

Use the DELETE command to delete one or more data set entries or one or more

members of a partitioned data set. The catalog entry for a partitioned data set is

removed only when the entire partitioned data set is deleted. The system deletes a

member of a partitioned data set by removing the member name from the directory

of the partitioned data set.

When you specify one of your data set names to be deleted the system adds your

user ID and, if possible, a descriptive qualifier. Because this can change your

intended request, be careful when deleting data sets that you do not delete data

sets you want to keep. For example, if you want to delete data set Z, you need to

specify DELETE Z. But if data set Z did not exist and there were a data set Z.Y,

data set Z.Y need to be deleted. The system derives the descriptive qualifier Y from

the catalog and deletes that data set.

If more than one descriptive qualifier exists for a data set, the system will prompt

you for the additional information. For example, if you have data sets Z.X and Z.Y

and you issue the command DELETE Z, the system will ask you to specify qualifier

X or Y.

Members of a partitioned data set and aliases for any members must each be

deleted explicitly except with a PDSE member. That is, when you delete a PDS

CANCEL Command

Chapter 1. TSO/E commands and subcommands 75

member, the system does not remove any alias names of the member. Also, when

you delete a PDS or PDSE alias name, the member itself is not deleted.

If a generation data group entry is to be deleted, any generation data sets that

belong to it must have been deleted.

For MVS, the original TSO/E DELETE command has been replaced by the Access

Method Services command with the same name. Note that when you delete a data

set, you must also free the allocated ddnames. If you want to modify VSAM objects

or use the other Access Method Services from a terminal, see z/OS DFSMS Access

Method Services for Catalogs. For error message information, see the MVS/ESA

System Messages library.

The DELETE command supports unique operand abbreviations in addition to the

typical abbreviations produced by truncation. The syntax and operand explanations

show these unique cases.

After you delete a protected non-VSAM data set, use the PROTECT command to

delete the password from the password data set. This prevents you from having

insufficient space for future entries.

DELETE command syntax

��

�

DELETE

(

entry_name

)

DEL

/password

�

�

CATALOG(catalog_name

)

/password

FILE(ddname)

 Nopurge

PURGE

PRG

�

�

ERASE

NOERASE

NERAS

 SCRATCH

NOSCRATCH

NSCR

CLUSTER

USERCATALOG

UCAT

SPACE

SPC

NONVSAM

NVSAM

ALIAS

GENERATIONDATAGROUP

GDG

PAGESPACE

PGSPC

��

Nopurge:

 NOPURGE

NPRG

DELETE Command

76 z/OS V1R9.0 TSO/E Command Reference

DELETE command operands

entry_name/password

is a required operand that names the entries in the designated catalogs to be

deleted. When more than one entry is to be deleted, the list of entry_names

must be enclosed in parentheses. This operand must be the first parameter

following DELETE.

 If you want to delete several data set entries having similar names, you can

insert an asterisk into the data set name at the point of dissimilarity. That is, all

data set entries whose names match except at the position where the asterisk

is placed are deleted. However, you can use only one asterisk per data set

name. It cannot appear in the first position.

 For example, assume that you have several data set entries named:

 1) VACOT.SOURCE.PLI.DDD

 2) VACOT.SOURCE.PLI.DDD.EEE

 3) VACOT.SOURCE.PLI

 DELETE VACOT.* results in the deletion of no data sets.

 DELETE VACOT.SOURCE.* results in the deletion of data set #3.

 DELETE VACOT.SOURCE.*.DDD results in the deletion of data set #1.

 DELETE VACOT.SOURCE.*.DDD.EEE results in the deletion of data set #2.

password

specifies a password for a password-protected entry. Passwords can be

specified for each entry_name or the catalog’s password can be specified

through the CATALOG operand for the catalog that contains the entries to

be deleted.

CATALOG(catalog_name[/password])

specifies the name of the catalog that contains the entries to be deleted.

catalog_name

identifies the catalog that contains the entry to be deleted.

password

specifies the master password of the catalog that contains the entries to be

deleted.

FILE(ddname)

specifies the name of the DD statement that identifies the volume that contains

the data set to be deleted or identifies the entry to be deleted.

PURGE | PRG | NOPURGE | NPRG

PURGE | PRG

specifies the entry is to be deleted even if the retention period, specified in

the TO or FOR operand, has not expired.

NOPURGE | NPRG

specifies the entry is not to be deleted if the retention period has not

expired. When NOPURGE is coded and the retention period has not

expired, the entry is not deleted. NOPURGE is the default.

ERASE | NOERASE | NERAS

ERASE

specifies the data component of a cluster (VSAM only) is to be overwritten

with binary zeros when the cluster is deleted. If ERASE is specified, the

volume that contains the data component must be mounted.

DELETE Command

Chapter 1. TSO/E commands and subcommands 77

NOERASE | NERAS

specifies the data component of a cluster (VSAM only) is not to be

overwritten with binary zeros when the cluster is deleted.

SCRATCH | NOSCRATCH | NSCR

SCRATCH

specifies a non-VSAM data set is to be scratched (removed) from the

volume table of contents (VTOC) of the volume on which it resides.

SCRATCH is the default.

NOSCRATCH | NSCR

specifies a non-VSAM data set is not to be scratched (removed) from the

VTOC of the volume on which it resides.

CLUSTER

specifies the entry to be deleted is a cluster entry for a VSAM data set.

USERCATALOG | UCAT

specifies the entry to be deleted is a user-catalog entry. This operand must be

specified if a user catalog is to be deleted. A user catalog can be deleted only if

it is empty.

SPACE | SPC

specifies the entry to be deleted is a VSAM data-space entry. This operand is

required if a data space is to be deleted. A data space can be deleted only if it

is empty. A VSAM data space can be cataloged only in a VSAM catalog, not in

an ICF catalog.

NONVSAM | NVSAM

specifies the entry to be deleted is a non-VSAM data set entry. This is an

optional operand that defaults to the actual type of catalog entry. If it differs

from the actual entry type, the DELETE fails.

ALIAS

specifies the entry to be deleted is an alias entry.

GENERATIONDATAGROUP | GDG

specifies the entry to be deleted is a generation-data-group entry. A

generation-data-group base can be deleted only if it is empty.

PAGESPACE | PGSPC

specifies a page space is to be deleted. A page space can be deleted only if it

is inactive.

 If the FILE operand is omitted, the entry_name is dynamically allocated in the

following cases:

v A non-VSAM entry is to be deleted and scratched.

v An entry is to be deleted and erased.

v An entry that resides in a data space of its own is to be deleted.

DELETE command return codes

 Table 9. DELETE Command Return Codes

0 Processing successful. Informational messages might have been issued.

4 Processing successful, but a warning message has been issued.

8 Processing was completed, but specific details were bypassed.

12 Processing unsuccessful.

16 Severe error or problem encountered.

DELETE Command

78 z/OS V1R9.0 TSO/E Command Reference

DELETE command example

Example

Operation: Delete an entry. In this example, a non-VSAM data set is deleted.

Known:

v The name of the data set to be deleted is EXAMPLE.NONVSAM.

v The prefix in the profile is D27UCAT.

v Your user ID is D27UCAT.
delete example.nonvsam scratch nonvsam

The DELETE command deletes the non-VSAM data set

(D27UCAT.EXAMPLE.NONVSAM). Because the catalog in which the entry resides

is assumed not to be password protected, the CATALOG operand is not required to

delete the non-VSAM entry.

SCRATCH removes the VTOC entry of the non-VSAM data set. Because FILE is

not coded, the volume that contains D27UCAT.EXAMPLE.NONVSAM is dynamically

allocated.

NONVSAM ensures the entry being deleted is a non-VSAM data set. However,

DELETE can still find and delete a non-VSAM data set if NONVSAM is omitted.

EDIT command

Use the EDIT command to enter data into the system. With EDIT and its

subcommands, you can create, modify, store, submit, retrieve, and delete data sets

with sequential or partitioned data set organization. You cannot, however, edit an

SMS-managed partitioned data set extended (PDSE). The data sets might contain:

v Source programs composed of program language statements such as PL/I,

COBOL, FORTRAN, and so on.

v Data used as input to a program.

v Text used for information storage and retrieval.

v Commands, subcommands, CLIST statements and data or all.

v Job control language (JCL) statements for background jobs.

The EDIT command supports only data sets that have one of the following formats:

v Fixed-blocked, unblocked, or standard block; with or without ASCII and machine

record formats.

v Variable-blocked or unblocked; without ASCII or machine control characters.

EDIT support of print control data sets is read-only. Whenever a SAVE

subcommand is entered for an EDIT data set originally containing print control

characters, the ability to print the data set on the printer with appropriate spaces

and ejects is lost. If you enter SAVE without operands for a data set containing

control characters, you are warned that the data set will be saved without control

characters, and you can choose to either save into the original data set or enter a

new data set name. If the data set specified on the EDIT command is partitioned

and contains print control characters, you cannot enter SAVE.

When you have finished editing a data set with a variable-blocked record format,

each record (line) is padded with blanks to the end of the record. When you save

the data set, the blanks are eliminated and the length adjusted accordingly.

DELETE Command

Chapter 1. TSO/E commands and subcommands 79

EDIT does not serialize on a member of a PDS, thus, it is possible for multiple

users to edit the same member of the same PDS at the same time. This can result

in only one user’s changes being saved in the data set.

When using REXX to invoke PROMPT, PUTGET or subcommand INPUT

processing in the background, you must use the REXX PROMPT function to

activate input from the REXX stack. Regardless of the REXX PROMPT function

setting, the REXX stack is queried first in foreground. If the system does not find

any input, the TERMINAL is queried to satisfy the input. Regardless of the

PROMPT setting, EDIT reads (“prompts”) the terminal for input. Only the REXX

stack is queried for the command response input in background. In automated

background processing, you can use the REXX PROMPT function setting to control

whether the REXX stack is available for command or subcommand input or not.

EDIT command syntax

�� EDIT

E
 data_set_name

/password

EMODE

IMODE

RECOVER

NORECOVER

NEW

OLD

 �

�

PLI

ASM

COBOL

GOFORT

FORTE

FORTG

FORTGI

FORTH

TEXT

DATA

CLIST

CNTL

VSBASIC

 NOSCAN

SCAN

 NUM

NONUM

BLOCK

(integer)

BLKSIZE

�

�
LINE

(integer)

LRECL

CAPS

ASIS

 ��

PLI

 PLI

PLIF

CHAR60

(

)

2

72

CHAR48

integer_1

integer_2

EDIT Command

80 z/OS V1R9.0 TSO/E Command Reference

GOFORT

 (FREE)

GOFORT

(FIXED)

NUM:

 NUM ()

integer_1

integer_2

EDIT command operands

data_set_name

specifies the name of the data set that you want to create or edit.

 If you enter the name of a sequential data set, but the data set is actually found

to be a partitioned data set, the member name TEMPNAME is assumed. See

also the description of the OLD operand below.

password

specifies the password associated with the data_set_name. If the password is

omitted and the data set is password protected, you are prompted for the data

set’s password. Read protected partitioned data sets prompt for the password

twice, provided it is not entered on the EDIT command, or is not the same

password as your LOGON user ID password.

EMODE | IMODE

EMODE

specifies the initial mode of entry is edit mode. This is the default for OLD

data sets. See z/OS TSO/E User’s Guide, for more information about using

edit mode.

IMODE

specifies the initial mode of entry is input mode. This is the default for NEW

or empty data sets. See z/OS TSO/E User’s Guide, for more information

about using input mode.

RECOVER | NORECOVER

RECOVER

specifies that you intend to recover an EDIT work file containing the data

set named on the EDIT command as the data set to be edited. You are

placed in edit mode. This operand is valid only when your profile has the

RECOVER attribute. See z/OS TSO/E User’s Guide, for more information.

NORECOVER

specifies that you do not want to recover a work file, even if a recoverable

work file exists. Any existing work files will be reused to hold data set

information for the current edit session. As a result, any recovery

information from a previous session will be lost.

NEW | OLD

NEW

specifies the data set named by the first operand does not exist. If an

existing cataloged data set already has the data set name that you

specified, the system notifies you when you try to save it. Otherwise, the

EDIT Command

Chapter 1. TSO/E commands and subcommands 81

system allocates your data set when you save it. If you specify NEW

without specifying a member name, a sequential data set is allocated for

you when you save it. If you specify NEW and include a member name, the

system allocates a partitioned data set and creates the indicated member

when you try to save it.

OLD

specifies the data set named on the EDIT command already exists. When

you specify OLD and the system is unable to locate the data set, you are

notified and you have to reenter the EDIT command. If you specify OLD

without specifying a member name, the system assumes that your data set

is sequential. If the data set is, in fact, a partitioned data set, the system

assumes that the member name is TEMPNAME. If you specify OLD and

include a member name, the system notifies you if your data set is not

partitioned.

Note: Specifying OLD will not prevent other users from using EDIT to update

the same member in the same partitioned data set (PDS) at the same

time. OLD informs the EDIT command that the data set already exists - it

does not provide protection equivalent to specifying DISP=OLD for the

data set.

If you do not specify OLD or NEW, the system uses a tentative default of OLD.

If the data set name or member name that you specified cannot be located, the

system defaults to NEW.

 Any user-defined data set type is also a valid data set type operand and can

have subfield parameters defined by your installation (see Table 10, note 4).

PLI

specifies the data identified by the first operand is for PL/I statements that are

to be held as V-format records with a maximum length of 104 bytes. The

statements can be for the PL/I Optimizing compiler or the PL/I Checkout

compiler.

PLIF

specifies the data set identified by the first operand is for PL/I statements that

are to be held as fixed format records 80 bytes long. The statements can be for

the PL/I Optimizing compiler or the PL/I Checkout compiler.

integer_1 and integer_2

specify the column boundaries for your input statements. These values are

applicable only when you request syntax checking of a data set for which the

PLIF operand has been specified. The position of the first character of a line, as

determined by the left margin adjustment on your terminal, is column 1. The

value for integer_1 specifies the column where each input statement is to begin.

The statement can extend from the column specified by integer_1 up to and

including the column specified as a value for integer_2. If you omit integer_1,

you must omit integer_2. The default values are columns 2 and 72. However,

you can omit integer_2 without omitting integer_1.

CHAR48 | CHAR60

CHAR48

specifies the PL/I source statements are written using the character set that

consists of 48 characters.

CHAR60

specifies the source statements are written using the character set that

consists of 60 characters.

EDIT Command

82 z/OS V1R9.0 TSO/E Command Reference

If no value is entered, the default value is CHAR60.

ASM

specifies the data set identified by the first operand is for assembler language

statements.

COBOL

specifies the data set identified by the first operand is for COBOL statements.

CLIST

specifies the data set identified by the first operand is for a CLIST and contains

TSO/E commands, subcommands, and CLIST statements as statements or

records in the data set. The data set is assigned line numbers.

CNTL

specifies the data set identified by the first operand is for job control language

(JCL) statements and SYSIN data to be used with the SUBMIT command or

subcommand.

TEXT

specifies the data set identified by the first operand is for text that can consist of

both uppercase and lowercase characters.

DATA

specifies the data set identified by the first operand is for data that can be

subsequently retrieved or used as input data for processing by an application

program.

FORTGE

specifies the data set identified by the first operand is for FORTRAN IV (E)

statements.

FORTG

specifies the data set identified by the first operand is for FORTRAN IV (G)

statements.

FORTGI

specifies the data set identified by the first operand is for FORTRAN IV (G1)

statements.

FORTH

specifies the data set identified by the first operand is for FORTRAN IV (H)

EXTCOMP statements.

GOFORT(FREE | FIXED)

specifies the data set identified by the first operand is for statements that are

suitable for processing by the Code and Go FORTRAN licensed program. If you

enter the descriptive qualifier without a data set type, the data set type default

is GOFORT(FREE). If you do not specify a FORTRAN language level,

GOFORT is the default value. FREE specifies the statements are of

variable-lengths and do not conform to set column requirements. If you do not

specify FREE or FIXED, FREE is the default. FIXED specifies statements

adhere to standard FORTRAN column requirements and are 80 bytes long.

VSBASIC

specifies the data set identified by the first operand is for VSBASIC statements.

 The ASM, CLIST, CNTL, COBOL, DATA, FORTGI, FORTH, GOFORT, PLI,

PLIF, TEXT, and VSBASIC operands specify the type of data set you want to

edit or create. You must specify one of these whenever:

v The data_set_name operand does not follow data set naming conventions

(that is, it is enclosed in quotation marks).

EDIT Command

Chapter 1. TSO/E commands and subcommands 83

v The data_set_name operand is a member name only (that is, it is enclosed

in parentheses).

v The data_set_name operand does not include a descriptive qualifier or the

descriptive qualifier is such that EDIT cannot determine the data set type.

The system prompts you for data set type whenever the type cannot be

determined from the descriptive qualifier (as in the 3 cases above), or whenever

you forget to specify a descriptive qualifier on the EDIT command.

Note: If PLI is the descriptive qualifier, the data set type default is PLI. To use

data set types GOFORT, FORTGI, or FORTH, you must enter the data

set type operand to save it.

SCAN | NOSCAN

SCAN

specifies each line of data you enter in input mode is to be checked,

statement by statement, for proper syntax. Syntax checking is available only

for statements written in FORTGI or FORTH.

 If your installation specified a syntax checker after system generation,

user-defined data set types can also use the SCAN operand.

NOSCAN

specifies syntax checking is not to be performed. NOSCAN is the default.

NUM(integer_1 integer_2) | NONUM

NUM(integer_1 integer_2)

specifies lines of the data set records are numbered. You can specify

integer_1 and integer_2 for ASM type data sets only. integer_1 specifies, in

decimal, the starting column (73-80) of the line number. integer_2 specifies,

in decimal, the length (8 or less) of the line number. integer_1 plus

integer_2 cannot exceed 81. If integer_1 and integer_2 are not specified,

the line numbers assume appropriate default values.

 NUM is the default.

NONUM

specifies your data set records do not contain line numbers. Do not specify

this operand for the VSBASIC and CLIST data set types because they must

always have line numbers.

BLOCK(integer) | BLKSIZE(integer)

specifies the maximum length, in bytes, for blocks of records of a new data set.

Specify this operand only when creating a new data set or editing an empty old

data set. You cannot change the block size of an existing data set except if the

data set is empty. If you omit this operand, it defaults according to the type of

data set being created. The IBM-supplied default values for the block sizes are

described in Table 10 on page 86. To modify those default values, see z/OS

TSO/E Customization. The block size (BLOCK or BLKSIZE), for data sets that

contain fixed-length records must be a multiple of the record length (LINE or

LRECL). For variable-length records, the block size must be a multiple of the

record length plus 4.

 If BLKSIZE (80) is coded with RECFM(U), then the line is truncated by 1

character. This byte (the last one) is reserved for an attribute character.

LINE(integer) | LRECL(integer)

specifies the length of the records to be created for a new data set. Specify this

operand only when creating a new data set or editing an empty old data set.

EDIT Command

84 z/OS V1R9.0 TSO/E Command Reference

The new data set is composed of fixed-length records with a logical record

length equal to the specified integer. You cannot change the logical record size

of an existing data set unless the data set is empty. If you specify this operand

and the data set type is ASM, FORTGI, FORTH, COBOL, or CNTL, the integer

must be 80. If this operand is omitted, the length defaults according to the type

of data set being created. The IBM-supplied default values are described in

Table 10 on page 86. To modify those default values, see z/OS TSO/E

Customization. Use this operand with the BLOCK or BLKSIZE operand.

CAPS | ASIS

CAPS

specifies all input data and data on modified lines is to be converted to

uppercase characters. If you omit both CAPS and ASIS, CAPS is the

default unless the data set type is TEXT.

ASIS

specifies input and output data are to retain the same form (uppercase and

lowercase) as entered. ASIS is the default for TEXT only.

EDIT Command

Chapter 1. TSO/E commands and subcommands 85

Table 10. EDIT command: default values for LINE or LRECL and BLOCK or BLKSIZE operands

Data set

type

DSORG LRECL Block size Line numbers

LINE(n) BLOCK(n) NUM(n,m) CAPS/ASIS

Default Specif. Default Specif.

(Note 1)

Default(n,m) Specif. Default CAPS

Required

ASM PS/PO 80 =80 3120 <=default Last 8 73<=n<=80 CAPS Yes

CLIST PS/PO 255 (Note 2) 3120 <=default (Note 3) CAPS Yes

CNTL PS/PO 80 =80 3120 <=default Last 8 CAPS Yes

COBOL PS/PO 80 =80 400 <=default First 6 CAPS Yes

DATA PS/PO 80 <=255 3120 <=default Last 8 CAPS No

FORTE PS/PO 80 <=255 3120 <=default Last 8 CAPS Yes

FORTG PS/PO 80 <=255 3120 <=default Last 8 CAPS Yes

FORTGI PS/PO 255 =80 400 <=default Last 8 CAPS Yes

FORTH PS/PO 255 =80 400 <=default Last 8 CAPS Yes

GOFORT PS/PO 255 3120 <=default First 8 CAPS Yes

(Or user supplied data set type - see Note 4)

PLI PS/PO 104 <=100 400 <=default (Note 3) CAPS No

PLIF PS/PO 80 <=100 400 <=default Last 8 CAPS Yes

TEXT PS/PO 255 (Note 2) 3120 <=default (Note 3) ASIS No

VSBASIC PS/PO 255 =80 3120 <=32,760 First 5 CAPS Yes

Notes

1. IBM supplies the default values. For information about how to modify the default values, see z/OS TSO/E Customization.

2. Specifying a LINE value results in fixed-length records with a LRECL equal to the specified value. The specified value must

always be equal to or less than the default. If the LINE operand is omitted, variable-length records are created.

3. The line numbers are contained in the last eight bytes of all fixed-length records and in the first eight bytes of all variable-length

records.

4. A user can have additional data set types recognized by the EDIT command processor. You can modify the user-defined data

set types along with any of the data sets shown above after system generation time by using the EDIT macro. The EDIT macro

causes a table of constants to be built, which describes the data set attributes. For more information about how to modify the

EDIT macro, see z/OS TSO/E Customization.

When you edit a data set type you defined yourself, the system uses the data set type as the descriptor (right-most) qualifier.

You cannot override any data set types that have been defined by IBM. The EDIT command processor supports data sets that

have the following attributes:

Data Set Organization: Must be either sequential or partitioned

Record Format: Fixed or variable

Logical Record Size: Less than or equal to 255 characters

Block Size: User specified-must be less than or equal to track length

Sequence Number: V type--First 8 characters

 F type--Last 8 characters

EDIT command return codes

 Table 11. EDIT command return codes

0 Processing successful.

12 Processing unsuccessful.

EDIT command examples

Example 1

Operation: Create a data set to contain a COBOL program.

Known:

v The user-supplied name for the new data set: PARTS

EDIT Command

86 z/OS V1R9.0 TSO/E Command Reference

v The fully-qualified name (where WRR05 is the user ID) will be:

WRR05.PARTS.COBOL

v Line numbers are to be assigned.
edit parts new cobol

Example 2

Operation: Create a data set to contain a program written in FORTRAN to be

processed by the FORTRAN (G1) compiler.

Known:

v The user-supplied name for the new data set: HYDRLICS

v The fully-qualified name (where WRR05 is the user ID) will be:

WRR05.HYDRLICS.FORT

v The input statements are not to be numbered.

v Syntax checking is desired.

v Block size: 400

v Line length must be: 80

v The data is to be changed to all uppercase.
edit hydrlics new fortgi nonum scan

Example 3

Operation: Add data to an existing data set containing input data for a program.

Known:

v The name of the data set: WRR05.MANHRS.DATA

v Block size: 3120

v Line length: 80

v Line numbers are desired.

v The data is to be uppercase.

v Syntax checking is not applicable.
e manhrs.data

Example 4

Operation: Create a data set for a CLIST.

Known:

v The user supplied name for the data set: CMDPROC
e cmdproc new clist

EDIT subcommands (overview)

Use the subcommands while in edit mode to edit and modify data and to

communicate with the system operator and with other terminal users. The format of

each subcommand is similar to the format of all the commands. Each subcommand,

therefore, is presented and explained like that for a command. Table 12 contains a

summary of each subcommand’s function.

For a complete description of the syntax and function of the ALLOCATE, ATTRIB,

EXEC, FREE, HELP, PROFILE, SEND, and SUBMIT subcommands, refer to the

description of the TSO/E command with the same name.

Note: Invocation of subcommands FORMAT, MERGE, RUN, and SUBMIT, without

specifying data set name(s), causes the EDIT command to allocate a new

and cataloged data set with the name of ’prefix.subcommand.date.time’. The

data set is deleted when the subcommand completes. If you are running with

profile NOPREFIX, you might want to set PREFIX to the user ID.

2. Available as an optional licensed program.

EDIT Command

Chapter 1. TSO/E commands and subcommands 87

Table 12. Subcommands and functions of the EDIT command

ALLOCATE Allocates data sets and file names.

ATTRIB Builds a list of attributes for non-VSAM data sets.

BOTTOM Moves the pointer to the last record in the data set.

CHANGE Alters the contents of a data set.

CKPOINT Protects input or modifications to a data set.

COPY Copies records within the data set.

DELETE Removes records.

DOWN Moves the pointer toward the end of the data.

END Terminates the EDIT command.

EXEC Executes a CLIST or REXX exec.

FIND Locates a character string.

FORMAT

2 Formats and lists data.

FREE Releases previously allocated data sets.

HELP Explains available subcommands.

INPUT Prepares the system for data input.

INSERT Inserts records.

Insert/ Replace/ Delete Inserts, replaces, or deletes a line.

LIST Prints out specific lines of data.

MERGE

2 Combines all or parts of data sets.

MOVE Moves records within a data set.

PROFILE Specifies characteristics of your user profile.

RENUM Numbers or renumbers lines of data.

RUN Causes compilation and execution of data set.

SAVE Retains the data set.

SCAN Controls syntax checking.

SEND Allows you to communicate with the system operator and with

other terminal users.

SUBMIT Submits a job for execution in the background.

TABSET Sets the tabs.

TOP Sets the pointer to zero value.

UNNUM Removes line numbers from records.

UP Moves the pointer toward the start of data set.

VERIFY Causes current line to be listed whenever the current line pointer

changes or the text of the current line is modified.

EDIT—ALLOCATE subcommand

Use the ALLOCATE subcommand to dynamically allocate the data sets required by

a program that you intend to execute. For a description of the ALLOCATE

command syntax and function, see the “ALLOCATE command” on page 17.

EDIT—ATTRIB subcommand

The ATTRIB subcommand of EDIT performs the same function as the ATTRIB

command without leaving edit mode. For a description of the ATTRIB command

syntax and function, see the “ATTRIB command” on page 62.

EDIT—BOTTOM subcommand

Use the BOTTOM subcommand to change the current line pointer to the last line of

the data set you are editing or to contain a zero value (if the data set is empty).

This subcommand can be useful when following subcommands such as INPUT or

MERGE must be at the end of the data set.

EDIT Subcommands (Overview)

88 z/OS V1R9.0 TSO/E Command Reference

EDIT—BOTTOM subcommand syntax

�� BOTTOM

B
 ��

EDIT—CHANGE subcommand

Use the CHANGE subcommand to modify a sequence of characters in a line or in a

range of lines. Either the first occurrence or all occurrences of the sequence can be

modified.

EDIT—CHANGE subcommand syntax

��

CHANGE

C

 * count_1

line_number_1

line_number_2

string_1

count_2

�

�
string_2

ALL

 ��

count_1:

count_1

EDIT—CHANGE subcommand operands

line_number_1

specifies the number of a line you want to change. When used with

line_number_2, it specifies the first line of a range of lines.

line_number_2

specifies the last line of a range of lines that you want to change. The specified

lines are scanned for first occurrence of the sequence of characters specified

for string_1.

* specifies the line pointed to by the line pointer in the system to be used. If you

do not specify a line number or an asterisk (*), the current line is the default.

count_1

specifies the number of lines that you want to change, starting at the position

indicated by the asterisk (*).

string_1

specifies a sequence of characters that you want to change. The sequence

must be (1) enclosed within single quotation marks, or (2) preceded by an extra

character which serves as a special delimiter. The extra character may be any

printable character other than a single quote (apostrophe), number, blank, tab,

comma, semicolon, parenthesis, or asterisk. The hyphen (-) and plus (+) signs

can be used, but should be avoided because of possible confusion with their

use in continuation. If the first character in the character string is an asterisk (*),

do not use a slash (/) as the extra character. (TSO/E interprets the /* as the

beginning of a comment.) The extra character must not appear in the character

EDIT—BOTTOM Subcommand

Chapter 1. TSO/E commands and subcommands 89

string. Do not put a standard delimiter between the extra character and the

string of characters unless you intend the delimiter to be treated as a character

in the character string.

 If string_1 is specified and string_2 is not, the specified characters are

displayed at your terminal up to (but not including) the sequence of characters

that you specified for string_1. You can then complete the line.

Note: If you are changing a string to a string of larger size, EDIT inserts the

larger string and attempts to preserve the rest of the line, including

spaces.

string_2

specifies a sequence of characters that you want to use as a replacement for

string_1. Like string_1, string_2 must be (1) enclosed within single quotation

marks, or (2) preceded by a special delimiter. This delimiter must be the same

as the extra character used for string_1. Optionally, this delimiter can also

immediately follow string_2.

Note: If you are changing a string to a string of larger size, EDIT inserts the

larger string and attempts to preserve the rest of the line, including

spaces.

ALL

specifies every occurrence of string_1 within the specified line or range of lines

are replaced by string_2. If this operand is omitted, only the first occurrence of

string_1 is replaced with string_2.

 If you cause an attention interruption during the CHANGE subcommand when

using the ALL operand, your data set might be partially changed. It is good

practice to list the affected area of your data set before continuing.

 If the special delimiter form is used, string_2 must be followed by the delimiter

before typing the ALL operand.

count_2

specifies a number of characters to be displayed at your terminal, starting at the

beginning of each specified line.

Quoted-String notation

As indicated previously, instead of using special delimiters to indicate a character

string, you can use paired single quotation marks (apostrophes) to accomplish the

same function with the CHANGE subcommand. The use of single quotation marks

as delimiters for a character string is called quoted-string notation. Following are the

rules for quoted-string notation for the string_1 and string_2 operands:

v Do not use both special-delimiter and quoted-string notation in the same

subcommand.

v Enclose each string with single quotation marks; for example,

‘This is string 1’ ‘This is string 2’. Quoted strings must be separated with

a blank.

v Use two single quotation marks to represent a single quote within a character

string; for example, ‘pilgrim’s progress’.

v Use two single quotation marks to represent a null string; for example,".

You can specify quoted-string notation in place of special-delimiter notation to

accomplish any of the functions of the CHANGE subcommand as follows:

EDIT—CHANGE Subcommand

90 z/OS V1R9.0 TSO/E Command Reference

Function *Special-delimiter notation Quoted-string notation

Replace !ab!cde! ‘ab’‘cde’

Delete !ab!!or!ab! ‘ab’ "

Print up to !ab ‘ab’

Place in front of !!cde! " ‘cde’

: * - using the exclamation point (!) as the delimiter.

Note the following:

1. Choose the form that best suits you (either special-delimiter or quoted-string)

and use it consistently. It will help you use the subcommand.

2. If you cause an attention interruption during the CHANGE subcommand, your

data set might not be completely changed. You should list the affected parts of

your data set before entering other subcommands.

Combinations of operands

You can enter several different combinations of these operands. The system

interprets the operands that you enter according to the following rules:

v When you enter a single number and no other operands, the system assumes

that you are accepting the default value of the asterisk (*) and that the number is

a value for the count_2 operand.

v When you enter two numbers and no other operands, the system assumes that

they are line_number_1 and count_2.

v When you enter two operands and the first is a number and the second begins

with a character that is not a number, the system assumes that they are

line_number_1 and string_1.

v When you enter three operands and they are all numbers, the system assumes

that they are line_number_1, line_number_2, and count_2.

v When you enter three operands and the first two are numbers, but the last

begins with a character that is not a number, the system assumes that they are

line_number_1, line_number_2, and string_1.

EDIT—CHANGE subcommand examples

Example 1: Operation: Change a sequence of characters in a particular line of a

line-numbered data set.

Known:

v The line number: 57

v The old sequence of characters: parameter

v The new sequence of characters: operand
change 57 XparameterXoperand

Example 1A: Operation: Change a sequence of characters in a particular line of

a line-numbered data set.

Known:

v The line number: 57

v The old sequence of characters: parameter

v The new sequence of characters: operand
change 57 ’parameter’ ’operand’

Example 2: Operation: Change a sequence of characters wherever it appears in

several lines of a line-numbered data set.

EDIT—CHANGE Subcommand

Chapter 1. TSO/E commands and subcommands 91

change 24 82 !i.e. !e.g. ! all

The blanks following the string_1 and string_2 examples (i.e. and e.g.) are

treated as characters.

Example 3: Operation: Change part of a line in a line-numbered data set.

Known:

v The line number: 143

v The number of characters in the line preceding the characters to be changed: 18
change 143 18

This form of the subcommand causes the first 18 characters of line number 143 to

be displayed at your terminal. You complete the line by typing the new information

and enter the line by pressing the Enter key. All of your changes are incorporated

into the data set.

Example 4: Operation: Change part of a particular line of a line-numbered data

set.

Known:

v The line number: 103

v A string of characters to be changed: 315 h.p. at 2400
change 103 m315 h.p. at 2400

This form of the subcommand causes line number 103 to be searched until the

characters 315 h.p. at 2400 are found. The line is displayed at your terminal up to

the string of characters. You can then complete the line and enter the new version

into the data set.

Example 5: Operation: Change the values in a table.

Known:

v The line number of the first line in the table: 387

v The line number of the last line in the table: 406

v The number of the column containing the values: 53
change 387 406 52

Each line in the table is displayed at your terminal up to the column containing the

value. As each line is displayed, you can type in the new value. The next line is not

displayed until you complete the current line and enter it into the data set.

Example 6: Operation: Add a sequence of characters to the front of the line that

is currently referred to by the pointer within the system.

Known:

v The sequence of characters: in the beginning
change * //in the beginning

Example 6A: Operation: Add a sequence of characters to the front of the line that

is currently referred to by the pointer within the system.

Known:

v The sequence of characters: in the beginning
change * ’’ ’in the beginning’

EDIT—CHANGE Subcommand

92 z/OS V1R9.0 TSO/E Command Reference

Example 7: Operation: Delete a sequence of characters from a line-numbered

data set.

Known:

v The line number containing the string of characters: 15

v The sequence of characters to be deleted: weekly
change 15 /weekly//

or

change 15 /weekly/

Example 7A: Operation: Delete a sequence of characters from a line-numbered

data set.

Known:

v The line number containing the string of characters: 15

v The sequence of characters to be deleted: weekly
change 15 ’weekly’ ’

Example 8: Operation: Delete a sequence of characters wherever it appears in a

line-numbered data set containing line numbers 10 to 150.

Known:

v The sequence of characters to be deleted: weekly
change 10 999/ weekly// all

EDIT—CKPOINT subcommand

Use the CKPOINT subcommand to protect input or modifications to a data set

during an EDIT session. All changes are placed in a work file (utility data set)

created by EDIT and are accessible to you if an abnormal termination occurs. The

purpose of this subcommand is to eliminate the need for specifying the SAVE

subcommand of EDIT to preserve changes.

EDIT—CKPOINT subcommand syntax

�� CKPOINT

CKP

value
 ��

EDIT—CKPOINT subcommand operand

value

specifies the intervals (number of line modifications or input lines) at which a

checkpoint is taken. You can use the value operand in one of three ways:

1. By specifying a decimal value from 1 to 9999 to be used as the checkpoint

intervals.

2. By specifying a decimal value of zero to terminate interval checkpointing.

3. By not specifying a value, causing a checkpoint to be taken. This can be

done even though you have already requested interval checkpointing.

Checkpointing does not stop in this case, but continues after reaching the

previously set interval value.

A line is considered modified if it is inserted, deleted, or changed. Issuing the

CHANGE subcommand repeatedly and specifying the same line is equivalent to

modifying the line once the CHANGE subcommand is executed.

EDIT—CHANGE Subcommand

Chapter 1. TSO/E commands and subcommands 93

EDIT—CKPOINT subcommand examples

Example 1: When the CKPOINT subcommand is issued without operands, EDIT

ensures that all changes or modifications made up to this point are reflected in the

work file. To do this, enter:

CKPOINT

or

CKP

Example 2: When the CKPOINT subcommand is issued with an operand value of

1 to 9999, a checkpoint is taken immediately and at requested intervals specified by

the operand value until termination. To do this, enter:

CKPOINT value

or

CKP value

Example 3: When interval checkpointing is in effect and you want to alter the

active value, reissue the CKPOINT subcommand inserting the new value like this:

CKPOINT new_value

or

CKP new_value

Example 4: To terminate interval checkpoint, issue the CKPOINT subcommand

with a zero value. The entry is:

CKPOINT 0

or

CKP 0

EDIT—COPY subcommand

Use the COPY subcommand of EDIT to copy one or more records that exist in the

data set you are editing. The copy operation copies data from a source location to a

target location within the same data set and leaves the source data intact. Existing

lines in the target area are shifted toward the end of the data set as required to

make room for the incoming data. No lines are lost.

The target line cannot be within the source area, with the exception that the target

line (the first line of the target area) can overlap the last line of the source area.

On completion of the copy operation, the current line pointer points to the last

copied-to line, not to the last line shifted to make room in the target area.

If you cause an attention interruption during the copy operation, the data set may

be only partially changed. As a check, list the affected part of the data set before

continuing.

If COPY is entered without operands, the line pointed to by the current line pointer

is copied into the current-line EDIT-default-increment location.

EDIT—CKPOINT Subcommand

94 z/OS V1R9.0 TSO/E Command Reference

EDIT—COPY subcommand syntax

��

COPY

CO

 *

line_1

line_2

line_3

*

1

*

'string'

count

line_4

INCR(lines)

��

EDIT—COPY subcommand operands

line_1

specifies the first line or the lower limit of the range to be copied. If the

specified line number does not exist in this data set, the range begins with the

next higher line number.

line_2

specifies the last line or the upper limit of the range to be copied. If the

specified line number does not exist in this data set, the range ends with the

highest line number that is less than line_2. If line_2 is not entered, the value

defaults to the value of line_1; that is, the source becomes one line. Do not

enter an asterisk for line_2.

 If COPY is followed by two line number operands, the system assumes them to

represent line_1 and line_3, and defaults line_2 to the value of line_1.

line_3

specifies the target line number; that is, the line at which the copied-to data

area starts. If the line_3 value corresponds to an existing line, the target line is

changed to line_3 + INCR(lines) and either becomes a new line or displaces an

existing line at that location. When the copy operation begins, existing lines

encountered in the target area are renumbered to make room for the incoming

data. The increment for renumbered lines is one (1). Specifying zero (0) for

line_3 puts the copied data at the top of the data set, only if line 0 is empty. If

line 0 has data, enter TOP followed by COPY with line_3 set to *. Note that

line_3 defaults to *.

 The value of line_3 should not fall in the range from line_1 to line_2. The target

line must not be in the range being copied. Exception: Line_3 can be equal to

line_2.

* represents the value of the current line pointer.

INCR(lines)

specifies the line number increment to be used for this copy operation. The

default is the value in effect for this data before the copy operation. When the

copy operation is complete, the increment reverts to the value in effect before

COPY was issued. Range: 1-8 decimal digits, but not zero.

 The increment for any renumbered lines is one (1).

‘string’

specifies a sequence of alphanumeric characters with a maximum length equal

to or less than the logical record length of the data set you are editing. When a

character string is specified, a search starting at the current line is done for the

line containing the string. When found, that line is the start of the range to be

copied for either numbered or unnumbered data sets.

count

specifies the total number of lines (the range) to be copied. Enter 1-8 decimal

digits, but not zero (0) or asterisk (*). The default for count depends on what is

EDIT—COPY Subcommand

Chapter 1. TSO/E commands and subcommands 95

specified for ‘string’ (‘string’ or *). If ‘string’ is specified and count is left blank,

the default for count is one (1). For example, if you specify:

COPY ’xyz’ 99

the count default is one (1).

 However, if you specify an asterisk (*) for the ‘string’, the next operand is

treated as the count operand. For example, if you specify:

COPY * 99

the count is 99.

line_4

applies to both numbered and unnumbered data sets. For unnumbered data

sets, line_4 specifies the target line (the line at which the copied-to data area

starts) as a relative line number (the nth line in the data set). For numbered

data sets, line_4 is specified the same as line_3. Specifying zero (0) for line_4

puts the copied data at the top of the data set, only if line (0) is empty. If line (0)

has data, enter TOP followed by COPY with line_4 set to *. The default for

line_4 is *. However, if ‘string’ is specified and count is left blank, the operand

following ‘string’ is treated as the count operand and the line_4 default (*) is

used.

 For example, if you specify :

COPY ’xyz’ 99

the count is 99 and line_4 is *.

EDIT—COPY subcommand examples

In the following examples, CLP refers to the current line pointer.

Example 1: Operation: Copy the current line right after itself in a line-numbered

data set.

Known:

v Data set contains lines 10 through 120.

v Current line pointer is at 50.

v EDIT provides an increment of 10.
Before: Enter: After:

0010 A copy 50 50 50 0010 A

0020 BB 0020 BB

0030 CCC or 0030 CCC

0040 DDDD 0040 DDDD

0050 EEEEE copy 50 50 0050 EEEEE

0060 FFFFFF CLP 0060 EEEEE

0070 GGGGGGG or 0061 FFFFFF

0080 HHHHHHHH 0070 GGGGGGG

0090 IIIIIIIII copy 50 0080 HHHHHHHH

0100 JJJJJJJJJJ 0090 IIIIIIIII

0110 KKKKKKKKKKK or 0100 JJJJJJJJJJ

0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK

 copy 0120 LLLLLLLLLLLL

 or

 copy ’ee’

Example 2: Operation: Copy the current line right after itself in an unnumbered

data set.

EDIT—COPY Subcommand

96 z/OS V1R9.0 TSO/E Command Reference

Known:

v Data set contains 12 lines of sequential alphabetic characters.

v Current line pointer is at the seventh line.
Before: Enter: After:

A copy * 1 * A

BB BB

CCC or CCC

DDDD DDDD

EEEEE copy * 1 EEEEE

FFFFFF FFFFFF

GGGGGGG or GGGGGGG

HHHHHHHH CLP GGGGGGG

IIIIIIIII copy * HHHHHHHH

JJJJJJJJJJ IIIIIIIII

KKKKKKKKKKK or JJJJJJJJJJ

LLLLLLLLLLLL KKKKKKKKKKK

 copy LLLLLLLLLLLL

 or

 copy ’gg’

Example 3: Operation: Copy a line to a line before it.

Known:

v Data set contains lines 10 through 120.

v Source line is 60.

v Target line is 50.

v EDIT supplies an increment of 10.
Before: Enter: After:

0010 A copy 60 50 0010 A

0020 BB 0020 BB

0030 CCC 0030 CCC

0040 DDDD 0040 DDDD

0050 EEEEE 0050 EEEEE

0060 FFFFFF CLP 0060 FFFFFF

0070 GGGGGGG 0061 FFFFFF

0080 HHHHHHHH 0070 GGGGGGG

0090 IIIIIIIII 0080 HHHHHHHH

0100 JJJJJJJJJJ 0090 IIIIIIIII

0110 KKKKKKKKKKK 0100 JJJJJJJJJJ

0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK

Example 4: Operation: Find the line containing a specific word and copy it to the

bottom of the data set.

Known:

v Data set contains nine lines of text.

v Word to be found is men.

v Data set is unnumbered.
Before: Enter: After:

NOW IS top NOW IS

THE TIME copy ’men’ 1 99999999 THE TIME

FOR ALL FOR ALL

GOOD MEN GOOD MEN

TO COME TO COME

TO THE TO THE

AID OF AID OF

EDIT—COPY Subcommand

Chapter 1. TSO/E commands and subcommands 97

THEIR THEIR

COUNTRY COUNTRY

 CLP GOOD MEN

Example 5: Operation: Copy lines 10, 20, and 30 into a target area starting at

line 100, using an increment of 5.

Known:

v Data set contains lines 10 through 120.
Before: Enter: After:

0010 A copy 10 30 100 incr(5) 0010 A

0020 BB 0020 BB

0030 CCC or 0030 CCC

0040 DDDD 0040 DDDD

0050 EEEEE copy 9 31 100 incr(5) 0050 EEEEE

0060 FFFFFF 0060 FFFFFF

0070 GGGGGGG or 0070 GGGGGGG

0080 HHHHHHHH 0080 HHHHHHHH

0090 IIIIIIIII copy 1 39 100 incr(5) 0090 IIIIIIIII

0100 JJJJJJJJJJ 0100 JJJJJJJJJJ

0110 KKKKKKKKKKK 0105 A

0120 LLLLLLLLLLLL 0110 BB

 CLP 0115 CCC

 0116 KKKKKKKKKKK

 0120 LLLLLLLLLLLL

Example 6: Operation: Copy four lines from a source area to a target area that

overlaps the last line of the source, using the default increment.

Known:

v Data set contains lines 10 through 120.

v Source lines are 20 through 50.

v Target area starts at line 50.

v EDIT provides an increment of 10.
Before: Enter: After:

0010 A copy 20 50 50 0010 A

0020 BB 0020 BB

0030 CCC 0030 CCC

0040 DDDD 0040 DDDD

0050 EEEEE 0050 EEEEE

0060 FFFFFF 0060 BB

0070 GGGGGGG 0070 CCC

0080 HHHHHHHH 0080 DDDD

0090 IIIIIIIII CLP 0090 EEEEE

0100 JJJJJJJJJJ 0091 FFFFFF

0100 KKKKKKKKKKK 0092 GGGGGGG

0120 LLLLLLLLLLLL 0093 HHHHHHHH

 0094 IIIIIIIII

 0100 JJJJJJJJJJ

 0110 KKKKKKKKKKK

 0120 LLLLLLLLLLLL

Example 7: Operation: Copy five lines into a target area that starts before but

overlaps into the source area.

Known:

v Data set contains lines 10-120.

v Source range is line 70-110.

v Target location is line 50.

v Increment is 10.

EDIT—COPY Subcommand

98 z/OS V1R9.0 TSO/E Command Reference

Before: Enter: After:

0010 A copy 70 110 50 incr(10) 0010 A

0020 BB 0020 BB

0030 CCC 0030 CCC

0040 DDDD 0040 DDDD

0050 EEEEE 0050 EEEEE

0060 FFFFFF 0060 GGGGGG

0070 GGGGGGG 0070 HHHHHHH

0080 HHHHHHHH 0080 IIIIIIII

0090 IIIIIIIII 0090 JJJJJJJJJ

0100 JJJJJJJJJJ CLP 0100 KKKKKKKKKK

0110 KKKKKKKKKKK 0101 FFFFFF

0120 LLLLLLLLLLLL 0102 GGGGGGG

 0103 HHHHHHHH

 0104 IIIIIIIII

 0105 JJJJJJJJJJ

 0110 KKKKKKKKKKK

 0120 LLLLLLLLLLLL

Example 8: Operation: Copy three lines to the top of the data set at line 0.

Known:

v Data set contains lines 10 through 120.

v Line 0 does not exist.

v Source lines are 80, 90, and 100.

v Target area starts at line 0.
Before: Enter: After:

0010 A top 0000 HHHHHHHH

0020 BB copy 80 100 * incr(50) 0050 IIIIIIIII

0030 CCC CLP 0100 JJJJJJJJJJ

0040 DDDD or 0101 A

0050 EEEEE 0102 BB

0060 FFFFFF copy 80 100 0 incr(50) 0103 CCC

0070 GGGGGGG 0104 DDDD

0080 HHHHHHHH 0105 EEEEE

0090 IIIIIIIII 0106 FFFFFF

0100 JJJJJJJJJJ 0107 GGGGGGG

0110 KKKKKKKKKKK 0108 HHHHHHHH

0120 LLLLLLLLLLLL 0109 IIIIIIIII

 0110 JJJJJJJJJJ

 0111 KKKKKKKKKKK

 0120 LLLLLLLLLLLL

Example 9: Operation: Copy three lines to the top of the data set at line 0, using

an increment of 50.

Known:

v Data set contains lines 0 through 120.

v Line 0 contains data.

v Source lines are 80, 90, and 100.

v Target area starts at line 0.
Before: Enter: After:

0000 ZIP top 0050 HHHHHHHH

0010 A copy 80 100 * incr(50) 0100 IIIIIIIII

0020 BB CLP 0150 JJJJJJJJJJ

0030 CCC The attempt to copy into 0151 ZIP

0040 DDDD line 0 gets the target data 0152 A

0050 EEEEE to the top of the data set, 0153 BB

0060 FFFFFF but shifts the target line 0154 CCC

0070 GGGGGGG by the increment value. 0155 DDDD

EDIT—COPY Subcommand

Chapter 1. TSO/E commands and subcommands 99

0080 HHHHHHHH 0156 EEEEE

0090 IIIIIIIII 0157 FFFFFF

0100 JJJJJJJJJJ 0158 GGGGGGG

0110 KKKKKKKKKKK 0159 HHHHHHHH

0120 LLLLLLLLLLLL 0160 IIIIIIIII

 0161 JJJJJJJJJJ

 0162 KKKKKKKKKKK

 0163 LLLLLLLLLLLL

 Note: An entry of

 copy 80 100 0 incr(50)

 produces the results

 shown at right. The target 0000 ZIP

 data is inserted between 0050 HHHHHHHH

 line 0 and the remainder 0100 IIIIIIIII

 of the data set. CLP 0150 JJJJJJJJJJ

 0151 A

 0152 BB

 0153 CCC

 0154 DDDD

 0155 EEEEE

 0156 FFFFFF

 0157 GGGGGGG

 0158 HHHHHHHH

 0159 IIIIIIIII

 0160 JJJJJJJJJJ

 0161 KKKKKKKKKKK

 0162 LLLLLLLLLLLL

EDIT—DELETE subcommand

Use the DELETE subcommand to remove one or more records from the data set

you are editing.

Upon completion of the delete operation, the current line pointer points to the line

that preceded the deleted line. If the first line of the data has been deleted, the

current line pointer is set to zero.

EDIT—DELETE subcommand syntax

��

DELETE

DEL

 * count

line_number_1

line_number_2

��

count:

count

EDIT—DELETE subcommand operands

line_number_1

specifies the line to be deleted or the first line of a range of lines to be deleted.

line_number_2

specifies the last line of a range of lines to be deleted.

* specifies the first line to be deleted is the line indicated by the current line

pointer in the system. If no line is specified, then this is the default.

EDIT—COPY Subcommand

100 z/OS V1R9.0 TSO/E Command Reference

count

specifies the number of lines to be deleted starting at the location indicated by

the preceding operand.

EDIT—DELETE subcommand examples

Example 1: Operation: Delete the line being referred to by the current line

pointer.

delete *

or

delete

or

del *

or

del

or

*

Any of the preceding command combinations or abbreviations cause the deletion of

the line referred to currently. The last instance is actually a use of the

insert/replace/delete function, not the DELETE subcommand.

Example 2: Operation: Delete a particular line from the data set.

Known:

v The line number: 00004
delete 4

Leading zeros are not required.

Example 3: Operation: Delete several consecutive lines from the data set.

Known:

v The number of the first line: 18

v The number of the last line: 36
delete 18 36

Example 4: Operation: Delete several lines from a data set with no line numbers.

The current line pointer in the system points to the first line to be deleted.

Known:

v The number of lines to be deleted: 18
delete * 18

Example 5: Operation: Delete all the lines in a data set.

Known:

v The data set contains less than 100 lines and is not line-numbered.
top

delete * 100

EDIT—DELETE Subcommand

Chapter 1. TSO/E commands and subcommands 101

EDIT—DOWN subcommand

Use the DOWN subcommand to change the current line pointer so that it points to

a line that is closer to the end of the data set.

EDIT—DOWN subcommand syntax

��

DOWN

D

 1

count

��

EDIT—DOWN subcommand operand

count

specifies the number of lines toward the end of the data set that you want to

move the current line pointer. If you omit this operand, the default is one.

EDIT—DOWN subcommand examples

Example 1: Operation: Change the pointer so that it points to the next line.

down

or

d

Example 2: Operation: Change the pointer so that you can refer to a line that is

located closer to the end of the data set than the line currently pointed to.

Known:

v The number of lines from the present position to the new position: 18
down 18

or

d 18

EDIT—END subcommand

Use the END subcommand to terminate the EDIT command. You can use this

subcommand with or without the optional operands SAVE or NOSAVE. In either

case, the EDIT command terminates processing. If you have modified your data set

and have not entered the SAVE subcommand or the SAVE/NOSAVE operand on

END, the system asks you if you want to save the data set. If you want to save the

data set, reply SAVE. If you do not want to save the data set, reply END.

EDIT—END subcommand syntax

�� END

SAVE

NOSAVE

 ��

There are no defaults. If you do not specify an operand or SAVE after the last

modification, you are prompted by the system.

Regardless of the PROMPT/NOPROMPT option, when END (with no operands) is

found in a CLIST, edit mode is terminated. (There is no SAVE processing done for

EDIT—DOWN Subcommand

102 z/OS V1R9.0 TSO/E Command Reference

this portion of the session.) If END (with no operands) is found outside a CLIST,

you are prompted to enter END or SAVE, regardless of the PROMPT/NOPROMPT

option.

EDIT—END subcommand operands

SAVE

specifies that the modified data set is to be saved.

NOSAVE

specifies that the modified data set is not to be saved.

EDIT—EXEC subcommand

Use the EXEC subcommand to execute a CLIST or REXX exec. For a description

of the EXEC command syntax and function, see the “EXEC command” on page

130.

Specify only REXX instructions in the REXX exec. Specify only EDIT subcommands

and CLIST statements in the CLIST. You cannot specify TSO/E commands in the

CLIST or REXX exec until you specify END to terminate EDIT.

EDIT—FIND subcommand

Use the FIND subcommand to locate a specified sequence of characters. The

system begins the search at the line referred to by the current line pointer in the

system, and continues until the character string is found or the end of the data set

is reached.

EDIT—FIND subcommand syntax

�� FIND

F

string

position

 ��

EDIT—FIND subcommand operands

If you do not specify any operands, the operands you specified last with FIND are

used. The search for the specified string begins at the line following the current line.

If you issue the TOP subcommand, the search for the specified string begins with

the second line of the data set. Successive use of the FIND subcommand without

operands allows you to search a data set, line by line.

string

specifies the sequence of characters (the character string) that you want to

locate. You must precede this sequence of characters with an extra character

that serves as a special delimiter. The extra character can be any printable

character other than a number, apostrophe, semicolon, blank, tab, comma,

parenthesis, or asterisk. Do not use the extra character in the character string

or put a delimiter between the extra character and the string of characters.

 Instead of using special delimiters to indicate a character string, you can use

paired single quotation marks (apostrophes) to accomplish the same function

with the FIND subcommand. The use of single quotation marks as delimiters for

a character string is called quoted-string notation. Following are the rules for

quoted-string notation for the string operand:

1. Enclose a string within single quotation marks; for example,

‘string character’.

EDIT—END Subcommand

Chapter 1. TSO/E commands and subcommands 103

2. Use two single quotation marks to represent a single quote within a

character string; for example, ‘pilgrims’s progress’.

3. Use two single quotation marks to represent a null string; for example, ".

position

specifies the column within each line at which you want the comparison for the

string to be made. This operand specifies the starting column of the field to

which the string is compared in each line. If you want to consider a string

starting in column 6, you must specify the digit 6 for the position operand. For

COBOL data sets, the starting column is calculated from the end of the six-digit

line number. If you want to consider a string starting in column 8, you must

specify the digit 2 for this operand. When you use this operand with the

special-delimiter form of notation for string, you must separate it from the string

operand with the same special delimiter as the one preceding the string

operand.

EDIT—FIND subcommand examples

Example 1: Operation: Locate a sequence of characters in a data set.

Known:

v The sequence of characters: ELSE GO TO COUNTER
find xelse go to counter

Example 2: Operation: Locate a particular instruction in a data set containing an

assembler language program.

Known:

v The sequence of characters: LA 3,BREAK

v The instruction begins in column 10.
find ’la 3,break ’ 10

EDIT—FREE subcommand

Use the FREE subcommand of EDIT to release (deallocate) previously allocated

data sets that you no longer need. For a description of the FREE command syntax

and function, see the “FREE command” on page 149.

EDIT—HELP subcommand

Use the HELP subcommand to obtain the syntax and function of EDIT

subcommands. For a description of the HELP command syntax and function, see

the “HELP command” on page 154.

EDIT—INPUT subcommand

Use the INPUT subcommand to put the system in input mode so that you can add

or replace data in the data set you are editing.

EDIT—INPUT subcommand syntax

��

INPUT

I

*

line_number

increment

 I

R

PROMPT

NOPROMPT

��

EDIT—FIND Subcommand

104 z/OS V1R9.0 TSO/E Command Reference

EDIT—INPUT subcommand operands

line_number

specifies the line number and location for the first new line of input. If no

operands are specified, input data is added to the end of the data set.

increment

specifies the amount that you want each succeeding line number to be

increased. If you omit this operand, the default is the last increment specified

with the INPUT or RENUM subcommand. If neither of these subcommands has

been specified with an increment operand, an increment of 10 is used.

* specifies the next new line of input either replaces or follows the line pointed to

by the current line pointer, depending on whether you specify the R or I

operand. If an increment is specified with this operand, it is ignored.

R specifies that you want to replace existing lines of data and insert new lines into

the data set. If you fail to specify either a line number or an asterisk, this

operand is ignored. If the specified line already exists, the old line is replaced

by the new line. If the specified line is vacant, the new line is inserted at that

location. If the increment is greater than 1, all lines between the replacement

lines are deleted.

I specifies that you want to insert new lines into the data set without altering

existing lines of data. If you fail to specify either a line number or an asterisk,

this operand is ignored.

PROMPT | NOPROMPT

PROMPT

specifies that you want the system to display either a line number or, if the

data set is not line numbered, a prompting character before each new input

line. If you omit this operand, the default is:

v The value (either PROMPT or NOPROMPT) that was established the last

time you used input mode.

v PROMPT, if this is the first use of input mode and the data set has line

numbers.

v NOPROMPT, if this is the first use of input mode and the data set does

not have line numbers.

NOPROMPT

specifies that you do not want to be prompted.

EDIT—INPUT subcommand examples

Example 1: Operation: Add and replace data in an existing data set.

Known:

v The data set is to contain line numbers.

v Prompting is specified.

v The ability to replace lines is specified.

v The first line number: 2

v The increment value for line numbers: 2
input 2 2 r prompt

The display at your terminal will resemble the following with your input in lowercase

and the system’s response in uppercase.

edit quer cobol old

EDIT

input 2 2 r prompt

EDIT—INPUT Subcommand

Chapter 1. TSO/E commands and subcommands 105

INPUT

00002 identification division

00004 program-id.query

00006

Example 2: Operation: Insert data in an existing data set.

Known:

v The data set contains text for a report.

v The data set does not have line numbers.

v The ability to replace lines is not necessary.

v The first input data is “New research and development activities will”, which is to

be placed at the end of the data set.

v The display at your terminal will resemble the following:
edit forecast.text old nonum asis

EDIT

input

INPUT

New research and development activities will

EDIT—INSERT subcommand

Use the INSERT subcommand to insert one or more new lines of data into the data

set. Input data is inserted following the location pointed to by the current line pointer

in the system. If no operands are specified, input data is placed in the data set line

following the current line. You can change the position pointed to by the line pointer

by using the BOTTOM, DOWN, TOP, UP, and FIND subcommands.

EDIT—INSERT subcommand syntax

�� INSERT

IN

insert_data
 ��

EDIT—INSERT subcommand operand

insert_data

specifies the complete sequence of characters that you want to insert into the

data set at the location indicated by the current line pointer. When the first

character of the inserted data is a tab, no delimiter is required between the

command and the data. Only a single delimiter is recognized by the system. If

you enter more than one delimiter, all except the first are considered to be input

data.

EDIT—INSERT subcommand examples

Example 1: Operation: Insert a single line into a data set.

Known:

v The line to be inserted is:

UCBFLG DS AL1 CONTROL FLAGS

v The data set is not line-numbered.

v The location for the insertion follows the 71st line in the data set.

v The current line pointer points to the 74th line in the data set.

v You are operating in edit mode.

Before entering the INSERT subcommand, the current line pointer must be moved

up 3 lines to the location where the new data is inserted:

up 3

EDIT—INPUT Subcommand

106 z/OS V1R9.0 TSO/E Command Reference

The INSERT subcommand is now entered:

INSERT UCBFLG DS AL1 CONTROL FLAGS

The display at your terminal shows the following:

up 3

insert ucbflg ds al1 control flags

Example 2: Operation: Insert several lines into a data set.

Known:

v The data set contains line numbers.

v The inserted lines are to follow line number 00280.

v The current line pointer points to line number 00040.

v You are operating in EDIT mode.

v The lines to be inserted are:

J.W. HOUSE 13-244831 24.73

T.N. HOWARD 24-782095 3.05

B.H. IRELAND 40-007830 104.56

Before entering the INSERT subcommand, the current line pointer must be moved

down 24 lines to the location where the new data is inserted:

down 24

The INSERT subcommand is now entered:

insert

The system responds with:

INPUT

The lines to be inserted are now entered.

The display at your terminal shows the following:

down 24

insert

INPUT

00281 j.w.house 13-244831 24.73

00282 t.n.howard 24-782095 3.05

00283 b.h.ireland 40-007830 104.56

New line numbers are generated in sequence beginning with the number one

greater than the one pointed to by the current line pointer. When no line can be

inserted, you are notified. No re-sequencing is done by the system.

EDIT—insert/replace/delete function

The insert/replace/delete function lets you insert, replace, or delete a line of data

without specifying a subcommand name. To insert or replace a line, indicate the

location and the new data. To delete a line, indicate the location. You can indicate

the location by specifying a line number or an asterisk. The asterisk means that the

location to be used is pointed to by the line pointer within the system. You can

change the line pointer by using the UP, DOWN, TOP, BOTTOM, and FIND

subcommands so that the proper line is referred to.

EDIT—INSERT Subcommand

Chapter 1. TSO/E commands and subcommands 107

EDIT—insert/replace/delete function syntax

�� *

line_number

string
 ��

EDIT—insert/replace/delete function operands

line_number

specifies the number of the line you want to insert, replace, or delete.

* specifies you want to replace or delete the line at the location pointed to by the

line pointer in the system. You can use the TOP, BOTTOM, UP, DOWN, and

FIND subcommands to change the line pointer without modifying the data set

you are editing.

string

specifies the sequence of characters you want to either insert into the data set

or to replace an existing line. If this operand is omitted and a line exists at the

specified location, the existing line is deleted. When the first character of string

is a tab, no delimiter is required between this operand and the preceding

operand. Only a single delimiter is recognized by the system. If you enter more

than one delimiter, all except the first are considered to be input data.

How the system interprets the operands

When you specify only a line number or an asterisk, the system deletes a line of

data. When you specify a line number or asterisk followed by a sequence of

characters, the system replaces the existing line with the specified sequence of

characters or, if there is no existing data at the location, the system inserts the

sequence of characters into the data set at the specified location.

EDIT—insert/replace/delete function examples

Example 1: Operation: Insert a line into a data set.

Known:

v The number to be assigned to the new line: 62

v The data: (OPEN INPUT PARTS-FILE)
62 open input parts-file

Example 2: Operation: Replace an existing line in a data set.

Known:

v The number of the line that is to be replaced: 287

v The replacement data: GO TO HOURCOUNT
287 go to hourcount

Example 3: Operation: Replace an existing line in a data set that does not have

line numbers.

Known:

v The line pointer in the system points to the line that is to be replaced.

v The replacement data is: 58 PRINT USING 120,S
* 58 print using 120,s

Example 4: Operation: Delete an entire line.

Known:

EDIT—Insert/Replace/Delete Function

108 z/OS V1R9.0 TSO/E Command Reference

v The number of the line: 98

v The current line pointer in the system points to line 98.
98

or

*

EDIT—LIST subcommand

Use the LIST subcommand to display one or more lines of your data set at your

terminal.

If you do not specify any operands with LIST, the entire data set is displayed.

EDIT—LIST subcommand syntax

��

LIST

L

line_number_1

line_number_2

*

count

 NUM

SNUM

��

EDIT—LIST subcommand operands

line_number_1

specifies the number of the line that you want to be displayed at your terminal.

line_number_2

specifies the number of the last line that you want displayed. When you specify

this operand, all the lines from line_number_1 through line_number_2 are

displayed.

* specifies the line referred to by the current line pointer is to be displayed at your

terminal. You can change the line pointer by using the UP, DOWN, TOP,

BOTTOM, and FIND subcommands without modifying the data set you are

editing.

 If the current line pointer is at zero (for example, as a result of a TOP

command), and line zero is not already in the data set, the current line pointer

moves to the first existing line.

count

specifies the number of lines that you want displayed, starting at the location

referred to by the line pointer.

NUM | SNUM

NUM

specifies line numbers are to be displayed with the text. If both NUM and

SNUM are omitted, NUM is the default. If your data set does not have line

numbers, this operand is ignored by the system.

SNUM

specifies line numbers are to be suppressed; that is, not displayed at the

terminal.

EDIT—Insert/Replace/Delete Function

Chapter 1. TSO/E commands and subcommands 109

EDIT—LIST subcommand examples

Example 1: Operation: List an entire data set.

list

Example 2: Operation: List part of a data set that has line numbers.

Known:

v The line number of the first line to be displayed: 27

v The line number of the last line to be displayed: 44

v Line numbers are to be included in the list.
list 27 44

Example 3: Operation: List part of a data set that does not have line numbers.

Known:

v The line pointer in the system points to the first line to be listed.

v The section to be listed consists of 17 lines.
list * 17

EDIT—MOVE subcommand

Use the MOVE subcommand of EDIT to move one or more records that exist in the

data set you are editing. The move operation moves data from a source location to

a target location within the same data set and deletes the source data. Existing

lines in the target area are shifted toward the end of the data set as required to

make room for the incoming data. No lines are lost in the shift.

The target line cannot be within the source area, with the exception that the target

line (the first line of the target area) can overlap the last line of the source area.

Upon completion of the move operation, the current line pointer points to the last

moved-to line, not to the last line shifted to make room in the target area.

If you do not specify any operands with MOVE, the MOVE subcommand is ignored.

If you cause an attention interruption during the move operation, the data set might

be partially changed. As a check, list the affected part of the data set before

continuing.

EDIT—MOVE subcommand syntax

��

MOVE

M

 *

line

line_2

line_3

1

*

*

'string'

count

line_4

INCR(lines)

��

EDIT—MOVE subcommand operands

line_1

specifies the first line or the lower limit of the range to be moved. If the

specified line number does not exist in this data set, the range begins at the

next higher line number.

EDIT—LIST Subcommand

110 z/OS V1R9.0 TSO/E Command Reference

line_2

specifies the last line or the upper limit of the range to be moved. If the

specified line number does not exist in this data set, the range ends with the

highest line number that is less than line_2. If line_2 is not entered, the value

defaults to the value of line_1; that is, the source becomes one line. Do not

enter an asterisk for line_2.

 If MOVE is followed by two line number operands, the system assumes them to

represent line_1 and line_3, and defaults line_2 to the value of line_1.

line_3

specifies the target line number; that is, the line at which the moved_to data

area will start. If the line_3 value corresponds to an existing line, the target line

is changed to line_3 + INCR(lines) and either becomes a new line or displaces

an existing line at that location. When the move operation begins, existing lines

encountered in the target area are renumbered to make room for the incoming

data. The increment for renumbered lines is one (1). Specifying zero (0) for

line_3 puts the moved data at the top of the data set, only if line 0 is empty. If

line 0 has data, enter TOP followed by MOVE with line_3 set to *. Note that

line_3 defaults to *.

 The value of line_3 should not fall in the range from line_1 to line_2; that is, the

target line must not be in the range being moved. Exception: Line_3 can be

equal to line_2.

* represents the value of the current line pointer.

INCR(lines)

specifies the line number increment to be used for this move operation. The

default is the value in effect for this data before the move operation. When the

move operation is complete, the increment reverts to the value in effect before

MOVE was issued. Range: 1-8 decimal digits, but not zero.

 The increment for any renumbered line is one (1).

‘string’

specifies a string of alphanumeric characters with a maximum length equal to or

less than the logical record length of the data set you are editing. When a

character string is specified, a search starting at the current line is done for the

line containing the string. When found, that line is the start of the range to be

moved for either numbered or unnumbered data sets.

count

specifies the total number of lines (the range) to be moved. Enter 1-8 decimal

digits, but not zero (0) or asterisk (*). The default for count depends on what is

specified for ‘string’ (‘string’ or *).

 If ‘string’ is specified and count is left blank, the default for count is one (1). For

example, if you specify:

MOVE ’xyz’ 99

the count default is one (1).

 However, if you specify an asterisk (*) for the ‘string’, the next operand is

treated as the count entry. For example, if you specify:

MOVE * 99

the 99 is treated as the count.

line_4

applies to both numbered and unnumbered data sets. For unnumbered data

EDIT—MOVE Subcommand

Chapter 1. TSO/E commands and subcommands 111

sets, line_4 specifies the target line (the line at which the moved-to data area

starts) as a relative line number (the 4th line in the data set). For numbered

data sets, line_4 is specified the same as line_3. Specifying zero (0) for line_4

puts the moved data at the top of the data set only if line 0 is empty. If line 0

has data, enter TOP followed by MOVE with line_4 set to *. The default for

line_4 is *. However, if ‘string’ is specified and count is left blank, the operand

following ‘string’ is treated as the count operand and the default for line_4 (*) is

used.

 For example, if you specify :

MOVE ’xyz’ 99

the count is 99 and line_4 is *.

EDIT—MOVE subcommand examples

In the following examples, CLP refers to the current line pointer.

Example 1: Operation: Move the current line right after itself in a line-numbered

data set.

Known:

v Data set contains lines 10 through 120.

v Current line pointer is at 50.

v EDIT provides an increment of 10.
Before: Enter: After:

0010 A move 50 50 50 0010 A

0020 BB 0020 BB

0030 CCC or 0030 CCC

0040 DDDD 0040 DDDD

0050 EEEEE move 50 50 CLP 0060 EEEEE

0060 FFFFFF 0061 FFFFFF

0070 GGGGGGG or 0070 GGGGGGG

0080 HHHHHHHH 0080 HHHHHHHH

0090 IIIIIIIII move 50 0090 IIIIIIIII

0100 JJJJJJJJJJ 0100 JJJJJJJJJJ

0110 KKKKKKKKKKK or 0110 KKKKKKKKKKK

0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL

 move ’ee’

Note: MOVE is ignored without operands.

Example 2: Operation: Move the current line right after itself in an unnumbered

data set.

Known:

v Data set contains 12 lines of sequential alphabetic characters.

v Current line pointer is at the seventh line.
Before: Enter: After:

A move * 1 * A

BB BB

CCC or CCC

DDDD DDDD

EEEEE move * 1 EEEEE

FFFFFF FFFFFF

GGGGGGG or CLP GGGGGGG

HHHHHHHH HHHHHHHH

IIIIIIIII move * IIIIIIIII

EDIT—MOVE Subcommand

112 z/OS V1R9.0 TSO/E Command Reference

JJJJJJJJJJ JJJJJJJJJJ

KKKKKKKKKKK or KKKKKKKKKKK

LLLLLLLLLLLL LLLLLLLLLLLL

 move ’gg’

Note: The effect of the operation is an unchanged data set.

Example 3: Operation: Illustrate an attempt to move a line to a line before it.

Known:

v Data set contains lines 10 through 120.

v Source line is 60.

v Target line is 40.

v EDIT supplies an increment of 10.
Before: Enter: After:

0010 A move 60 60 40 0010 A

0020 BB 0020 BB

0030 CCC 0030 CCC

0040 DDDD 0040 DDDD

0050 EEEEE CLP 0050 FFFFFF

0060 FFFFFF 0051 EEEEE

0070 GGGGGGG 0070 GGGGGGG

0080 HHHHHHHH 0080 HHHHHHHH

0090 IIIIIIIII 0090 IIIIIIIII

0100 JJJJJJJJJJ 0100 JJJJJJJJJJ

0110 KKKKKKKKKKK 0110 KKKKKKKKKKK

0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL

Example 4: Operation: Find the line containing a specific word and move it to the

bottom of the data set.

Known:

v Data set contains nine lines of text.

v Word to be found is men.

v Data set is unnumbered.
Before: Enter: After:

NOW IS top NOW IS

THE TIME move ’men’ 1 99999999 THE TIME

FOR ALL FOR ALL

GOOD MEN TO COME

TO COME TO THE

TO THE AID OF

AID OF THEIR

THEIR COUNTRY

COUNTRY CLP GOOD MEN

Example 5: Operation: Move lines 10, 20, and 30 into a target area starting at

line 100, using an increment of 5.

Known:

v Data set contains line 10 through 120.
Before: Enter: After:

0010 A move 10 30 100 incr(5) 0040 DDDD

0020 BB 0050 EEEEE

0030 CCC or 0060 FFFFFF

0040 DDDD 0070 GGGGGGG

0050 EEEEE move 9 31 100 incr(5) 0080 HHHHHHHH

0060 FFFFFF 0090 IIIIIIIII

EDIT—MOVE Subcommand

Chapter 1. TSO/E commands and subcommands 113

0070 GGGGGGG or 0100 JJJJJJJJJJ

0080 HHHHHHHH 0105 A

0090 IIIIIIIII move 1 39 100 incr(5) 0110 BB

0100 JJJJJJJJJJ CLP 0115 CCC

0110 KKKKKKKKKKK 0116 KKKKKKKKKKK

0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL

Example 6: Operation: Move four lines from a source area to a target area that

overlaps the last line of the source, using the default increment.

Known:

v Data set contains lines 10 through 120.

v Source lines are 20 through 50.

v Target area starts at line 50.

v EDIT provides an increment of 10.
Before: Enter: After:

0010 A move 20 50 50 0010 A

0020 BB 0060 BB

0030 CCC 0070 CCC

0040 DDDD 0080 DDDD

0050 EEEEE CLP 0090 EEEEE

0060 FFFFFF 0091 FFFFFF

0070 GGGGGGG 0092 GGGGGGG

0080 HHHHHHHH 0093 HHHHHHHH

0090 IIIIIIIII 0094 IIIIIIIII

0100 JJJJJJJJJJ 0100 JJJJJJJJJJ

0110 KKKKKKKKKKK 0110 KKKKKKKKKKK

0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL

Example 7: Operation: Move five lines into a target area that starts before but

overlaps into the source area.

Known:

v Data set contains lines 10-120.

v Source range is line 70-110.

v Target location is line 50.

v Increment is to be 10.
Before: Enter: After:

0010 A move 70 110 50 incr(10) 0010 A

0020 BB 0020 BB

0030 CCC 0030 CCC

0040 DDDD 0040 DDDD

0050 EEEEE 0050 EEEEE

0060 FFFFFF 0060 GGGGGG

0070 GGGGGGG 0070 HHHHHHH

0080 HHHHHHHH 0080 IIIIIIII

0090 IIIIIIIII 0090 JJJJJJJJJ

0100 JJJJJJJJJJ CLP 0100 KKKKKKKKKK

0110 KKKKKKKKKKK 0101 FFFFFF

0120 LLLLLLLLLLLL 0120 LLLLLLLLLLL

Example 8: Operation: Move three lines to the top of the data set at line 0.

Known:

v Data set contains lines 10 through 120.

v Line 0 doesn’t exist.

v Source lines are 80, 90, and 100.

v Target area starts at line 0.

EDIT—MOVE Subcommand

114 z/OS V1R9.0 TSO/E Command Reference

Before: Enter: After:

0010 A top 0000 HHHHHHHH

0020 BB move 80 100 * incr(50) 0050 IIIIIIIII

0030 CCC CLP 0100 JJJJJJJJJJ

0040 DDDD or 0101 A

0050 EEEEE 0102 BB

0060 FFFFFF move 80 100 0 incr(50) 0103 CCC

0070 GGGGGGG 0104 DDDD

0080 HHHHHHHH 0105 EEEEE

0090 IIIIIIIII 0106 FFFFFF

0100 JJJJJJJJJJ 0107 GGGGGGG

0110 KKKKKKKKKKK 0110 KKKKKKKKKKK

0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL

Example 9: Operation: Move three lines to the top of the data set at line 0, using

an increment of 50.

Known:

v Data set contains lines 0 through 120.

v Line 0 contains data.

v Source lines are 80, 90, and 100.

v Target area starts at line 0.
Before: Enter: After:

0000 ZIP top 0050 HHHHHHHH

0010 A move 80 100 * incr(50) 0100 IIIIIIIII

0020 BB CLP 0150 JJJJJJJJJJ

0030 CCC The attempt to move into 0151 ZIP

0040 DDDD line 0 gets the target data 0152 A

0050 EEEEE to the top of the data set 0153 BB

0060 FFFFFF but shifts the target line 0154 CCC

0070 GGGGGGG by the increment value. 0155 DDDD

0080 HHHHHHHH 0156 EEEEE

0090 IIIIIIIII 0157 FFFFFF

0100 JJJJJJJJJJ 0158 GGGGGGG

0110 KKKKKKKKKKK 0159 KKKKKKKKKKK

0120 LLLLLLLLLLLL 0160 LLLLLLLLLLLL

 Note: An entry of

 move 80 100 0 incr(50)

 produces the results

 shown at right. The 0000 ZIP

 target data is inserted 0050 HHHHHHHH

 between line 0 and the 0100 IIIIIIIII

 remainder of the data CLP 0150 JJJJJJJJJJ

 set. 0151 A

 0152 BB

 0153 CCC

 0154 DDDD

 0155 EEEEE

 0156 FFFFFF

 0157 GGGGGGG

 0158 KKKKKKKKKKK

 0159 LLLLLLLLLLLL

EDIT—PROFILE subcommand

Use the PROFILE subcommand to change the characteristics of your user profile.

For a description of the PROFILE command syntax and function, see the “PROFILE

command” on page 234.

EDIT—RENUM subcommand

Use the RENUM subcommand to:

EDIT—MOVE Subcommand

Chapter 1. TSO/E commands and subcommands 115

v Assign a line number to each record of a data set that does not have a line

number.

v Renumber each record in a data set that has line numbers.

If the data set you are editing contains fixed-length records, new line numbers are

placed in the last 8 character positions. There are three exceptions to this general

rule:

v Data set type COBOL - first six positions

v Data set type VSBASIC - first five positions

v Data set type ASM and NUM operand specified on EDIT command - positions

indicated in NUM operand subfield.

If fixed-length record data sets are being numbered for the first time, any data in the

positions indicated previously is overlaid.

If you are editing variable-length records without sequence numbers, the records

are lengthened so that an eight-digit sequence field (five digits if VSBASIC) is

prefixed to each record. You are notified if any records have been truncated in the

process. Records are truncated when the data length plus the sequence length

exceeds the maximum record length of the data set you are editing.

In all cases, the specified (or default) increment value becomes the line increment

for the data set.

EDIT—RENUM subcommand syntax

�� RENUM

REN

new_line_no.

Increment

 ��

Increment

 increment

old_line_no.

end_line_no.

EDIT—RENUM subcommand operands

new_line_number

specifies the new line number to be assigned to the first line renumbered. If this

operand is omitted, the first line number is 10.

increment

specifies the amount by which each succeeding line number is to be

incremented. The default value is 10. You cannot use this operand unless you

specify a new line number.

old_line_number

specifies the location within the data set where renumbering begins. If this

operand is omitted, renumbering starts at the beginning of the data set. You

cannot use this operand unless you specify a value for the increment operand

or when you are initially numbering a NONUM data set.

end_line_number

specifies the line number at which renumbering is to end. If this operand is

EDIT—RENUM Subcommand

116 z/OS V1R9.0 TSO/E Command Reference

omitted, renumbering continues to the end of the data set. You cannot use this

operand without specifying all the other operands.

EDIT—RENUM subcommand examples

Example 1: Operation: Renumber an entire data set using the default values for

each operand.

renum

Example 2: Operation: Renumber part of a data set with an increment of 1.

Known:

v The old line number: 17

v The new line number: 21

v The increment: 1
ren 21 1 17

Example 3: Operation: Renumber part of a data set from which lines have been

deleted.

Known:

v Before deletion of the lines, the data set contained lines 10, 20, 30, 40, and 50.

v Lines 20 and 30 were deleted.

v Lines 40 and 50 are to be renumbered with an increment of 10.
ren 20 10 40

Note: The lowest acceptable value for a new line number in this example is 11.

Example 4: Operation: Renumber a range of lines so that new lines may be

inserted.

Known:

v Before renumbering, the data set lines are numbered 10, 20, 23, 26, 29, 30, 40,

and 50.

v Two lines are to be inserted after line 29.

v Lines 23-29 are to be renumbered with an increment of 2.

v The first new number to be assigned is 22.
ren 22 2 23 29

EDIT—RUN subcommand

Use the RUN subcommand to compile, load, and execute the source statements in

the data set that you are editing. The RUN subcommand is designed specifically for

use with certain licensed programs. The RUN subcommand selects and invokes the

particular licensed program needed to process your source statements.

Any data sets required by your problem program can be allocated before you enter

EDIT mode or can be allocated using the ALLOCATE subcommand.

If you want to enter a value for parameters, you should enter this before any of the

other keyword operands.

EDIT—RUN subcommand syntax

��

RUN

R

'parameters'

 NOTEST

TEST

 SMSG

LMSG

 SPREC

LPREC

 OPT

CHECK

�

EDIT—RENUM Subcommand

Chapter 1. TSO/E commands and subcommands 117

�

�

LIB(

data_set

)

 NOSTORE

STORE

 GO

NOGO

SIZE(value)

 NOPAUSE

PAUSE

��

EDIT—RUN subcommand operands

‘parameters’

specifies a string of up to 100 characters that is passed to the program that is

to be executed. You can specify this operand only for programs that accept

parameters.

TEST | NOTEST

TEST

specifies testing is to be performed during execution. This operand is valid

for the VSBASIC licensed program only.

NOTEST

specifies no testing is to be done.

 If you omit both TEST and NOTEST, the default value is NOTEST.

LMSG | SMSG

LMSG

specifies that you want to receive the longer form of a diagnostic message.

This operand is valid for GOFORT statements only.

SMSG

specifies that you want to receive the shorter form of a diagnostic message,

if there is one. SMSG is the default.

LPREC | SPREC

LPREC

specifies long precision arithmetic calculations are to be used. This operand

is valid for VSBASIC statements only.

SPREC

specifies short precision arithmetic calculations are to be used. SPREC is

the default.

CHECK | OPT

CHECK

specifies the PL/I Checkout compiler. This operand is valid for the PL/I

licensed program only. If you omit this operand, the OPT operand is the

default value for data sets having the PLI descriptive qualifier.

OPT

specifies the PL/I Optimizing compiler. This operand is valid for the PL/I

licensed program only.

 If both CHECK and OPT are omitted, OPT is the default value for data sets

having the PLI descriptive qualifier.

LIB(data_set)

specifies the library or libraries that contain subroutines needed by the program

you are running. These libraries are concatenated to the default system libraries

EDIT—RUN Subcommand

118 z/OS V1R9.0 TSO/E Command Reference

and passed to the loader for resolution of external references. This operand is

valid only for the following data set types: ASM, COBOL, FORTGI, and

PLI(Optimizer).

STORE | NOSTORE

STORE

specifies a permanent OBJ data set is to be created. The dsname of the

OBJ data set is based on the data set name entered on the EDIT

command. This operand is valid only for VSBASIC statements.

NOSTORE

specifies a permanent OBJ data set is not to be created. This operand is

valid only for VSBASIC statements. NOSTORE is the default.

GO | NOGO

GO

specifies the compiled program is to be executed. This operand is valid only

for VSBASIC statements. GO is the default.

NOGO

specifies the compiled program is not to be executed. This operand is valid

only for VSBASIC statements.

SIZE(value)

specifies the size (1-999) of the area for VSBASIC.

PAUSE | NOPAUSE

PAUSE

specifies that you are given the chance to add or change certain compiler

options before proceeding to the next chain program. This operand is valid

only for VSBASIC statements.

NOPAUSE

specifies that you are not to be given the chance to add or change certain

compiler options before proceeding to the next chain program. This operand

is valid only for VSBASIC statements. NOPAUSE is the default.

EDIT—RUN subcommand examples

Example 1: Operation: Start an assembler language program contained in the

data set referred to by the EDIT command.

Known:

v The parameters to be passed to the program are: ‘1024,PAYROLL’
run ’1024,payroll’

Example 2: Operation: Run a FORTRAN IV (GI) program that calls an assembler

language output program to maintain bit patterns.

Known:

v The assembler language subroutine in load module form resides in a library

called USERID.MYLIB.LOAD.
run lib(mylib.load)

EDIT—SAVE subcommand

Use the SAVE subcommand to have your data set retained as a permanent data

set. If you use SAVE without an operand, the updated version of your data set

EDIT—RUN Subcommand

Chapter 1. TSO/E commands and subcommands 119

replaces the original version. When you specify a new data set name as an

operand, both the original version and the updated version of the data set are

available for further use.

When you edit a data set with a variable or variable-blocked record format, each

record (line) is padded with blanks to the end of the record. When you save the

data set, the blanks are eliminated and the length adjusted accordingly.

EDIT—SAVE subcommand syntax

�� SAVE

S

*

dsname

RENUM(

Operands

)

UNNUM

REUSE

 ��

Operands:

new_line_num

10

incr

old_line_num

end_line_num

EDIT—SAVE subcommand operands

* specifies the edited version of your data set is to replace the original version. If

there are no operands entered on the subcommand, the * is the default.

dsname

specifies a data set name assigned to your edited data set. The new name

might be different from the current name. If this operand or an asterisk is

omitted, the name entered with the EDIT command is used.

 If you specify the name of an existing data set or member of a partitioned data

set, that data set or member is replaced by the edited data set. (Before

replacement occurs, you are given the option of specifying a new data set

name or member name.)

 If you do not specify the name of an existing data set or partitioned data set

member, a new data set (the edited data set) is created with the name you

specified. If you specified a member name for a sequentially organized data set,

no replacement of the data set takes place. If you do not specify a member

name for an existing partitioned data set, the edited data set is assigned a

member name of TEMPNAME.

REUSE | RENUM | UNNUM

These operands cannot be included unless a data set name or an * is specified.

REUSE

specifies the data set specified in the dsname operand is to be reused, if it

already exists. You are not prompted for it.

RENUM

specifies the data set is to be renumbered before it is saved.

EDIT—SAVE Subcommand

120 z/OS V1R9.0 TSO/E Command Reference

new_line_number

specifies the first line number to be assigned to the data set. If this

operand is omitted, the first line number is 10.

incr

specifies the amount by which each succeeding line number is to be

incremented. The default is 10. This operand cannot be included unless

the new_line_number is specified.

old_line_number

specifies the line location within the data set where the renumber

process begins. If this operand is omitted, renumbering starts at the

beginning of the data set. The old_line_number must be equal to or

less than the new_line_number. If you specify this operand, then you

must also specify INCR.

end_line_number

specifies the line location within the data set where renumbering is to

end. If this operand is omitted, renumbering stops at the end of the data

set. The end_line_number must be greater than the old_line_number.

This operand cannot be included unless the old_line_number is

specified.

UNNUM

specifies the data set is to be unnumbered before it is saved.

 If the data set you are editing originally contained control characters (ANSI or

machine), and you enter SAVE without operands, the following actions apply:

v For Sequential Data Set: You are warned that the data set is saved without

control characters, that is, the record format is changed. Then you are prompted

to enter another data set name for SAVE or a null line to reuse the EDIT data

set.

v For Partitioned Data Set: Saving into the EDIT data set with a control character

attribute is not allowed when it is partitioned. You must save into another data set

by specifying a data set name on a subsequent SAVE subcommand entry.

EDIT—SAVE subcommand examples

Example 1: Operation: Save the data set that has just been edited by the EDIT

command.

Known:

v The system is in edit mode. The user-supplied name that you want to give the

data set is INDEX.
save index

Example 2: Operation: Save the data set that has just been edited, renumbering

it first.

Known:

v new_line_number 100

v increment(INCR) 50
save * renum(100 50)

EDIT—SCAN subcommand

Use the SCAN subcommand to request syntax checking services for statements

that are processed by the FORTRAN(H) compiler. You can have each statement

EDIT—SAVE Subcommand

Chapter 1. TSO/E commands and subcommands 121

checked as you enter it in input mode, or any or all existing statements checked.

You must explicitly request a check of the syntax of statements you are adding,

replacing, or modifying, using the CHANGE subcommand, the INSERT

subcommand with the insert data operand, or the insert/replace/delete function.

EDIT—SCAN subcommand syntax

�� SCAN

SC

line_number_1

line_number_2

*

count

ON

OFF

 ��

EDIT—SCAN subcommand operands

line_number_1

specifies the number of a line to be checked for proper syntax.

line_number_2

specifies all lines between line_number_1 and line_number_2 are to be

checked for proper syntax.

* specifies the line at the location indicated by the line pointer in the system is to

be checked for proper syntax. The line pointer can be changed by the TOP,

BOTTOM, UP, DOWN, and FIND subcommands.

count

specifies the number of lines, beginning with the current line, that you want

checked for proper syntax.

ON | OFF

ON

specifies each line is to be checked for proper syntax as it is entered in

input mode.

OFF

specifies each line is not to be checked as it is entered in input mode.

 If no operands are specified, all existing statements are checked for proper syntax.

EDIT—SCAN Subcommand Examples

Example 1: Operation: Have each line of a FORTRAN program checked for

proper syntax as it is entered.

scan on

Example 2: Operation: Have all the statements in a data set checked for proper

syntax.

scan

Example 3: Operation: Have several statements checked for proper syntax.

Known:

v The number of the first line to be checked: 62

v The number of the last line to be checked: 69
scan 62 69

Example 4: Operation: Check several statements for proper syntax.

EDIT—SCAN Subcommand

122 z/OS V1R9.0 TSO/E Command Reference

Known:

v The line pointer points to the first line to be checked.

v The number of lines to be checked: 7
scan * 7

EDIT—SEND subcommand

Use the SEND subcommand to send a message to another terminal user or to the

system operator. For a description of the SEND command syntax and function, see

the “SEND command” on page 261.

EDIT—SUBMIT subcommand

Use the SUBMIT subcommand of EDIT to submit one or more batch jobs for

processing. Each job submitted must reside in either a sequential data set, a

direct-access data set, or in a member of a partitioned data set. Submitted data

sets must be fixed-blocked, 80 byte records. Using the EDIT command to create a

CNTL data set provides the correct format.

Any of these data sets can contain part of a job, one job, or more than one job that

can be executed by a single entry of SUBMIT. Each job must comprise an input job

stream (JCL plus data). If the characters in these data sets are lowercase, do not

submit data sets with descriptive qualifiers TEXT or PLI.

Job statements are optional. The generated jobname is your user ID plus an

identifying character. SUBMIT prompts you for the character and inserts the job

accounting information from the user’s LOGON command on any generated job

card. The system or installation default MSGCLASS and CLASS are used for

submitted jobs unless MSGCLASS and CLASS are specified on the job

statement(s) being submitted.

You must be authorized by RACF to use SUBMIT.

EDIT—SUBMIT subcommand syntax

��

SUBMIT

SUB

�

*

(

data_set

)

 NOHOLD

HOLD

 NOJOBCHAR

JOBCHAR(characters)

�

�

PASSWORD

NOPASSWORD

 USER(user_id)

NOUSER

 NOTIFY

NONOTIFY

��

EDIT—SUBMIT subcommand operands

(data_set)

specifies one or more data set name or names of members of partitioned data

sets that define an input stream (JCL plus data). If you specify more than one

data set name, enclose them in parentheses.

* specifies the data set you are editing defines the input stream to be submitted.

Only the current data set is selected as the input stream. If no operands are

entered on the subcommand, the * is the default.

HOLD | NOHOLD

EDIT—SCAN Subcommand

Chapter 1. TSO/E commands and subcommands 123

HOLD

specifies SUBMIT is to cause job output to be held for use with the

OUTPUT command by defaulting to the held MSGCLASS supplied by the

installation manager for the user. If SYSOUT=* or HOLD=YES is specified

on the DD statement, then output directed to DD statements is held.

NOHOLD

specifies the job output is not to be held. The default is NOHOLD.

JOBCHAR(characters) | NOJOBCHAR

JOBCHAR(characters)

specifies characters to be appended to the job name on every JOB

statement in the data set being submitted. If you plan to use the STATUS

command and your job name is your user ID, use 1 character.

NOJOBCHAR

specifies SUBMIT prompts for job name characters whenever the job name

is the user ID. If prompting is not possible, the job name character defaults

to the letter X. The default is NOJOBCHAR.

PASSWORD | NOPASSWORD

PASSWORD

indicates a PASSWORD operand is to be inserted on the generated JOB

statement by SUBMIT, if RACF is installed. SUBMIT prompts you to enter

the password value (in print inhibit mode, if the terminal supports the

feature). This operand is not required if the data set has a JOB statement

or RACF is not installed. If RACF is installed, then PASSWORD is the

default. The password used is:

v The password (if executing in the foreground) entered on the LOGON

command initiating the foreground session. The current password is used

for RACF-defined users. If you have updated your password using the

LOGON command, you must enter the PASSWORD operand with the

new password on the SUBMIT command.

v The password on the LOGON command (if executing in the background)

in the data set containing the EDIT command. If a LOGON command is

not in the data set, the USER and PASSWORD operands are not to be

included on the generated JOB statement.

NOPASSWORD

specifies PASSWORD and USER operands are not included on the

generated JOB statement. If RACF is not installed, NOPASSWORD is the

default.

USER(user_id) | NOUSER

USER(user_id)

specifies a USER operand is to be inserted on the generated JOB

statement, if RACF is installed. The user ID specified is also used as the

job name for the generated JOB statement and for job name or user ID

comparison for NOJOBCHAR processing (see NOJOBCHAR operand

description).

 If neither USER or NOUSER is entered and RACF is installed, then USER

is the default. The default user ID value used is determined by the following

rules. The rules are ordered. If the first rule is met, then the user ID is used.

1. The user ID specified on a LOGON command in the data set containing

the EDIT command.

EDIT—SUBMIT Subcommand

124 z/OS V1R9.0 TSO/E Command Reference

2. The user ID specified on the LOGON command (if executing in the

foreground) initiating the foreground session; the user ID specified on

the USER operand (if executing in the background - RACF defined

users only) on the JOB statement initiating the background session.

3. The default user ID SUBMITJB is used.

NOUSER

specifies generated JOB statements do not include USER and PASSWORD

operands. If USER is not specified and RACF is not installed, then

NOUSER is the default.

NOTIFY | NONOTIFY

NOTIFY

specifies you are to be notified when your job terminates in the background,

if a JOB statement has not been provided. If you do not want to receive

messages, the message is placed in the broadcast data set. You must then

enter LISTBC to receive the message. If a JOB statement is generated,

then NOTIFY is the default.

 When you supply your own JOB statement, use the NOTIFY=user_id

operand on the JOB statement if you want to be notified when the job

terminates. SUBMIT ignores the NOTIFY operand unless it is generating a

JOB statement.

NONOTIFY

specifies a termination message is not to be issued or placed in the

broadcast data set. The NONOTIFY operand is only recognized when a

JOB statement has not been provided with the job that you are processing.

 If any of the preceding types of data sets containing two or more jobs is submitted

for processing, certain conditions apply:

v The SUBMIT processor builds a job statement for the first job in the first data set,

if none is supplied, but does not build job statements for any other jobs in the

data set(s).

v If the SUBMIT processor determines that the first job contains an error, none of

the jobs are submitted.

v After the SUBMIT processor submits a job for processing, errors occurring in the

execution of that job have no effect on the submission of any remaining job(s) in

that data set.

Any job statement you supply should have a job name consisting of your user ID

and a single identifying character. If the job name is not in this format, you cannot

refer to it with the CANCEL command. You are required to specify the job name in

the STATUS command if the IBM-supplied exit has not been replaced by your

installation and your job name is not your user ID plus a single identifying character.

If you want to provide a job statement, but you also want to be prompted for a

unique job name character, put your user ID in the job name field and follow it with

blanks so that there is room for SUBMIT to insert the prompted-for character. This

allows you to change job names without re-editing the JCL data set.

After SUBMIT has successfully submitted a job for batch processing, it issues a

‘jobname(jobid) submitted’ message. The job ID is a unique job identifier assigned

by the job entry subsystem (JES).

EDIT—SUBMIT Subcommand

Chapter 1. TSO/E commands and subcommands 125

EDIT—SUBMIT subcommand examples

Example 1: Operation: Submit the data set you are editing for batch processing.

Known:

v The data set has no job statement and you do not want to be notified when the

job is completed.
submit * nonotify

EDIT—TABSET subcommand

Use the TABSET subcommand to:

v Establish or change the logical tabulation settings.

v Cancel any existing tabulation settings.

Note: The TABSET subcommand is supported only on terminals that support tab

setting.

The basic form of the TABSET subcommand causes each strike of the tab key to

be translated into blanks corresponding to the column requirements for the data set

type. For example, if the name of the data set you are editing has FORT as a

descriptive qualifier, the first tabulation setting is in column 7. The values in Table 13

on page 126 are in effect when you first enter the EDIT command.

 Table 13. Default tab settings

Data set name descriptive qualifier Default tab settings columns

ASM 10,16,31,72

CLIST 10,20,30,40,50,60

CNTL 10,20,30,40,50,60

COBOL 8,12,72

DATA 10,20,30,40,50,60

FORT FORTRAN(H) compilers,

FORTRAN IV (G1)

 product data set types.

7,72

PLI PL/I Checkout and

 Optimizing compiler data set types.

5,10,15,20,25,30,35,40,45,50

TEXT 5,10,15,20,30,40

VSBASIC 10,15,20,25,30,35,40,45,50,55

User-defined 10,20,30,40,50,60

You might find it convenient to have the mechanical tab settings coincide with the

logical tab settings. Note that, except for line-numbered COBOL or VSBASIC data

sets, the logical tab columns apply only to the data that you actually enter. Because

a printed line number prompt is not logically part of the data you are entering, the

logical tab positions are calculated beginning at the next position after the prompt.

Thus, if you are receiving five-digit line number prompts and have set a logical tab

in column 10, the mechanical tab should be set 15 columns to the right of the

margin. If you are not receiving line number prompts, the mechanical tab should be

set 10 columns to the right of the margin.

In COBOL and VSBASIC data sets, the sequence number (line number) is

considered to be a logical (and physical) part of each record that you enter. For

example, if you specify the NONUM operand on the EDIT command while editing a

COBOL or VSBASIC data set, the system assumes that column 1 is at the left

margin and that you are entering the required sequence numbers in the first six

EDIT—SUBMIT Subcommand

126 z/OS V1R9.0 TSO/E Command Reference

columns for COBOL or the first five columns for VSBASIC. Thus, logical tabs are

calculated from the left margin (column 1). In line-numbered COBOL data sets (the

NONUM operand was not specified), the column following a line number prompt is

considered to be column 7 of your data; the first six columns are occupied by the

system-supplied sequence number (line number). In line-numbered VSBASIC data

sets, the column following a line number prompt is considered to be column 6 of

your data; the first five columns are occupied by the system-supplied sequence

number.

EDIT—TABSET subcommand syntax

��

TABSET

TAB

 ON(integer_list)

OFF

IMAGE

��

integer_list:

�

integer_list

EDIT—TABSET subcommand operands

ON(integer_list)

specifies tab settings are to be translated into blanks by the system. If you

specify ON without an integer list, the existing or default tab settings are used.

You can establish new values for tab settings by specifying the numbers of the

tab columns as values for the integer list. A maximum of ten values is allowed.

ON is the default.

OFF

specifies there is to be no translation of tabulation characters. Each strike of the

tab key produces a single blank in the data.

IMAGE

specifies the next input line defines new tabulation settings. The next line that

you type should consist of t’s, indicating the column positions of the tab

settings, and blanks or any other characters except t. Ten is the maximum

number of tab settings allowable. Do not use the tab key to produce the new

image line. A good practice is to use a sequence of digits between the t’s so

you can easily determine which columns the tabs are set to (see “Example 3”).

EDIT—TABSET subcommand examples

Example 1: Operation: Re-establish standard tab settings for your data set.

Known:

v Tab settings are not in effect.
tab

Example 2: Operation: Establish tabs for columns 2, 18, and 72.

tab on(2 18 72)

Example 3: Operation: Establish tabs at every 10th column.

EDIT—TABSET Subcommand

Chapter 1. TSO/E commands and subcommands 127

tab image

123456789t123456789t123...

EDIT—TOP subcommand

Use the TOP subcommand to change the line pointer in the system to zero, that is,

the pointer points to the position preceding the first line of an unnumbered data set

or of a numbered data set, which does not have a line number of zero. The pointer

points to line number zero of a data set that has one.

This subcommand is useful in setting the line pointer to the proper position for

subsequent subcommands that need to start their operations at the beginning of the

data set.

If the data set is empty, you are notified. However, the current line pointer still takes

on a zero value.

EDIT—TOP subcommand syntax

�� TOP ��

EDIT—TOP subcommand examples

Example 1: Operation: Move the line pointer to the beginning of your data set.

Known:

v The data set is not line-numbered.
top

EDIT—UNNUM subcommand

Use the UNNUM subcommand to remove existing line numbers from the records in

the data set.

EDIT—UNNUM subcommand syntax

�� UNNUM

UNN
 ��

EDIT—UNNUM subcommand examples

Example 1: Operation: Remove the line numbers from an ASM-type data set.

Known:

v The data set has line numbers.
unnum

EDIT—UP subcommand

Use the UP subcommand to change the line pointer in the system so that it points

to a record nearer the beginning of your data set. If the use of this subcommand

causes the line pointer to point to the first record of your data set, you are notified.

EDIT—UP subcommand syntax

EDIT—TABSET Subcommand

128 z/OS V1R9.0 TSO/E Command Reference

��

UP
 1

count

��

EDIT—UP subcommand operands

count

specifies the number of lines toward the beginning of the data set that you want

to move the current line pointer. If count is omitted, the pointer is moved only

one line.

EDIT—UP subcommand examples

Example 1: Operation: Change the pointer so that it refers to the preceding line.

up

Example 2: Operation: Change the pointer so that it refers to a line located 17

lines before the location currently referred to.

up 17

EDIT—VERIFY subcommand

Use the VERIFY subcommand to display the line that is currently pointed to by the

line pointer in the system whenever the current line pointer has been moved, or

whenever a line has been modified by use of the CHANGE subcommand. Until you

enter VERIFY, you do not have verification of changes in the position of the current

line pointer.

EDIT—VERIFY subcommand syntax

��

VERIFY

V

 ON

OFF

��

EDIT—VERIFY subcommand operands

ON

specifies you want to have the line that is referred to by the line pointer

displayed at your terminal each time the line pointer changes or each time the

line is changed by the CHANGE subcommand. If you omit both ON and OFF,

then ON is the default.

OFF

specifies you want to discontinue this service.

 If the VERIFY subcommand is activated by BOTTOM, CHANGE, COPY,

DELETE, DOWN, FIND, MOVE, RENUM, UNNUM and UP, then subcommands

change the current line pointer and cause it to be displayed.

EDIT—VERIFY subcommand examples

Example 1: Operation: Have the line that is referred to by the line pointer

displayed at your terminal each time the line pointer changes.

verify

or

verify on

EDIT—UP Subcommand

Chapter 1. TSO/E commands and subcommands 129

Example 2: Operation: Terminate the operations of the VERIFY subcommand.

verify off

END command

Use the END command to end a CLIST. When the system encounters an END

command in a CLIST, and the CONTROL MAIN option is not in effect, CLIST

execution halts. If the CONTROL MAIN option is in effect, use the EXIT statement

to halt the execution of the CLIST. This function is better performed by the EXIT

statement.

END command syntax

�� END ��

END command return code

The return code is from the command that executed last.

EXEC command

Use the EXEC command to execute a CLIST or REXX exec.

You can specify the EXEC command or the EXEC subcommand of EDIT and TEST

in three ways:

v Explicit form: Enter EXEC or EX followed by the name of the data set that

contains the CLIST or REXX exec. If you need prompting you should invoke

EXEC explicitly with the PROMPT option.

v Implicit form: Do not enter EXEC or EX; enter only the name of the member to

be found in a procedure library such as SYSEXEC or SYSPROC. A procedure

library consists of partitioned data sets allocated to the specific file (SYSPROC or

SYSEXEC) either dynamically by the ALLOCATE command or as part of the

LOGON procedure. TSO/E determines if the member name is a system

command before it searches the libraries.

v Extended implicit form: Enter a percent sign followed by the member name.

TSO/E only searches the procedure library for the specified name. This form is

faster because the system doesn’t search for commands.

Some of the commands in a CLIST might have symbolic variables for operands.

When you specify the EXEC command, you can supply actual values for the

system to use in place of the symbolic variables. In addition, when you invoke a

REXX exec you can pass arguments on the EXEC command. Specify the

arguments in single quotation marks.

Using EXEC as a subcommand

The EXEC subcommand of EDIT and TEST performs the same basic functions as

the EXEC command. However, a CLIST that is executed with an EXEC

subcommand can execute only CLIST statements and other subcommands of the

EDIT or TEST commands. A REXX exec executed with an EXEC subcommand can

execute only REXX statements. When used to execute a REXX exec, the EXEC

subcommand can use the data stack to provide information to EDIT or TEST. For

EDIT—VERIFY Subcommand

130 z/OS V1R9.0 TSO/E Command Reference

information about writing CLISTs, see z/OS TSO/E CLISTs. For information about

writing REXX execs, see z/OS TSO/E REXX User’s Guide and z/OS TSO/E REXX

Reference.

EXEC command syntax

��
 (1)

EXEC

Dataset

Oper1

EX

member_name

Oper2

(2)

%

 NOLIST

LIST

 NOPROMPT

PROMPT

�

�
CLIST

EXEC

 ��

Dataset

 data_set_name(member_name)

(member_name)

data_set_name

'data_set_name'

'data_set_name(member_name)'

Oper1

�

�

�

'p_value'

'k_word

'

(

'k_value'

)

(k_value)

argument

Oper2

�

�

�

�

�

p_value

k_word

(

k_value

)

(

'k_value'

)

argument

EXEC Command

Chapter 1. TSO/E commands and subcommands 131

Notes:

1 The explicit form of the EXEC command.

2 The implicit (without percent sign) and extended implicit form (with percent

sign).

EXEC command operands

data_set_name(member_name)

specifies the unqualified name of a partitioned data set whose type is CLIST or

exec. The data_set_name is the library name such as the name SESSION in

the data set PREFIX.SESSION.CLIST.(member_name) is the name of the

CLIST or exec. For example, to execute prefix.session.clist(first), specify:

exec session (first)

(member_name)

specifies a member of a partitioned data set whose type is CLIST or exec.

(member_name) is the name of the CLIST or exec. For example, to execute an

exec named prefix.exec(two), specify:

exec (two) exec

data_set_name

specifies the unqualified name of a sequential data set whose type is CLIST or

exec. Data_set_name is the name of the CLIST or exec. For example, to

execute a CLIST named prefix.test.clist, specify:

exec test.clist

'data_set_name'

specifies the fully-qualified name of a sequential data set. For example, to

execute an exec named project.num.one, specify:

exec ’project.num.one’ exec

If the data set is not a sequential, but a partitioned one, a member TEMPNAME

is assumed. If such member does not exist, the system will notify you,

otherwise it will be executed.

'data_set_name(member_name)'

specifies the fully-qualified name of a partitioned data set. (member_name) is

the name of the CLIST or exec. For example, to execute a CLIST named

PROJECT.SPECIAL.$1993(MARCH), specify:

exec ’PROJECT.SPECIAL.$1993(MARCH)’

A CLIST or REXX exec data set may contain line numbers according to the

following format:

v Variable blocked — First 8 characters in each record. If the data in columns

1-8 is not numeric, the CLIST or exec treats it as data.

v Fixed blocked — Last 8 characters in each record

You are suggested to use variable blocked records, although you can also use

fixed blocked here.

p_value

For use with CLISTs only. A p_value is the actual value a user specifies for

each positional parameter on the PROC statement. Lowercase values are

changed to uppercase.

EXEC Command

132 z/OS V1R9.0 TSO/E Command Reference

The user must specify a p_value for each positional parameter in the same

sequence as each appears on the PROC statement (for example, p_value1

p_value2

... p_valuen).

 If a user does not specify a p_value for a positional parameter, the CLIST

prompts for the value. See “Considerations for passing quotation marks” on

page 138 for more information.

argument

For use with execs only. Specifies a parameter passed to an exec.

k_word

For use with CLISTs only. k_word is the actual keyword a user specifies. It

can be an abbreviation if it is different from all other k_word parameters in the

EXEC command.

 The specification of k_word must follow all p_value specifications; but k_words

may be specified in any order.

k_value

A value associated with a k_word.

'k_value'

k_value is a quoted string. Lowercase values are changed to uppercase.

Specification on the PROC statement: keyword()

v If the user specifies k_word without a k_value, the CLIST prompts for the

value.

v If the user does not specify k_word, the associated keyword has a null value.

Specification on the PROC statement: keyword(default value)

v If the user specifies k_word without a k_value, the CLIST prompts for the

value.

v If the user does not specify k_word, the CLIST uses the default value.

v If the user specifies k_word with a k_value, the CLIST uses k_value.

See “Considerations for passing quotation marks” on page 138 for more

information.

NOLIST | LIST

specifies whether commands and subcommands are to be listed at the terminal

as they are executed.

NOLIST

specifies commands and subcommands are not to be listed. The system

assumes NOLIST for implicit and explicit EXEC commands. NOLIST is the

default.

LIST

specifies commands and subcommands are to be listed. This operand is

valid only for the explicit form of EXEC.

NOPROMPT | PROMPT

NOPROMPT

specifies no prompting during the execution of a CLIST or REXX exec.

NOPROMPT is the default.

 No prompting is allowed during the execution of a program if the

NOPROMPT keyword operand of PROFILE has been specified, even if the

PROMPT option of EXEC has been specified.

EXEC Command

Chapter 1. TSO/E commands and subcommands 133

PROMPT

specifies prompting to the terminal is allowed during the execution of a

CLIST or REXX exec. The PROMPT keyword implies LIST, unless NOLIST

has been explicitly specified. Therefore, all commands and subcommands

are listed at the terminal as they are executed. This operand is valid only

for the explicit form of EXEC.

 The PROMPT keyword is not propagated to nested EXEC commands. If

you want to be prompted during execution of the program it invokes,

PROMPT must be specified on a nested EXEC command.

 The following is a list of options resulting from specific keyword entries:

 Keyword specified Resulting options

PROMPT

NOPROMPT

LIST

NOLIST

PROMPT LIST

PROMPT NOLIST

NOPROMPT LIST

NOPROMPT NOLIST

No keywords

PROMPT LIST

NOPROMPT NOLIST

LIST NOPROMPT

NOLIST NOPROMPT

PROMPT LIST

PROMPT NOLIST

NOPROMPT LIST

NOPROMPT NOLIST

NOPROMPT NOLIST

CLIST | EXEC

specifies whether a CLIST or an exec is to be run. To fully qualify the data set

name, the EXEC command adds the suffix CLIST or EXEC to the data set name.

For more information about these operands, including what happens when you

omit the parameter, see “Using the explicit form of the EXEC command” on

page 135.

CLIST

specifies that a CLIST is to be run.

EXEC

specifies that an exec is to be run.

%member_name

specifies the name of a CLIST or exec. If the percent sign (%) is entered,

TSO/E searches its procedure libraries for a CLIST or exec only. It does not

search for a command. For example, to execute an exec named

prefix.myrexx.exec(new) that is allocated to a procedure library, specify:

%new

 Suppose the following CLIST exists as a data set named ANZAL:

PROC 3 INPUT OUTPUT LIST LINES()

allocate dataset(&input) file(indata) old

allocate dataset(&output) block(100) space(300,100)

allocate dataset(&list) file(print)

call proc2 ’&lines’

end

The PROC statement indicates that the three symbolic values, &INPUT,; &OUTPUT

and &LIST, are positional (required) and that the symbolic value &LINES is a

keyword (optional).

To replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for LIST, and 20 for

LINES, you need to specify the implicit form:

anzal alpha beta comment lines(20)

EXEC Command

134 z/OS V1R9.0 TSO/E Command Reference

Note: If the value of a operand is not entered on the EXEC statement, that value is

nullified.

Using the explicit form of the EXEC command

Using the explicit form of the EXEC command involves naming the data set that

contains the REXX exec or CLIST. You can create the fully-qualified data set name

and determine whether it will run as a REXX exec or a CLIST. You can specify

either the CLIST or EXEC operand to denote that the data set be run as a REXX

exec or CLIST. If you specify neither operand, the data set is run based on the

following specifications or defaults:

If you know that the procedure being run is a CLIST, you can code the CLIST

operand. If you know that the procedure being run is a REXX exec, you can code

the EXEC operand. If you do not code the CLIST or EXEC operand on the EXEC

command, the EXEC command processor examines line 1 of the procedure for the

characters “REXX” within a comment. (The characters “REXX” can be in uppercase,

lowercase, or mixed-case.) This is known as the REXX exec identifier. If the EXEC

command finds the REXX exec identifier, the EXEC command runs the procedure

as a REXX exec. Otherwise, it runs the procedure as a CLIST.

In addition to determining if a procedure is run as a REXX exec or a CLIST, the

CLIST and EXEC operands of the EXEC command determine how to name a

non-fully-qualified data set. If you specify EXEC, a non-fully-qualified data set name

is suffixed with the “exec” qualifier. If you specify CLIST, or if you omit either EXEC

or CLIST, a non-fully-qualified name is suffixed with the qualifier “clist”.

The tables that follow show the decision process for a data set that is fully qualified

and a data set that is not fully qualified. The outcome of the decision is that the

data set will run as either:

v A REXX exec

v A CLIST

 Data Set is fully qualified

If you specify: The procedure runs as a:

EXEC REXX exec

CLIST CLIST

Neither and REXX ID is present REXX exec

Neither and REXX ID is not present CLIST

 Data set name is not fully qualified

If you specify: Then TSO/E adds: The procedure runs as a:

EXEC TSO/E prefix and EXEC suffix REXX exec

CLIST TSO/E prefix and CLIST suffix CLIST

Neither TSO/E prefix and CLIST suffix and

the REXX ID is present

REXX exec

Neither TSO/E prefix and CLIST suffix and

the REXX ID not present

CLIST

The following examples use the explicit form of the EXEC command and show how

the procedure runs in each case.

Example 1

Operation: Name is not fully qualified, EXEC or CLIST keyword is specified.

Result:

EXEC Command

Chapter 1. TSO/E commands and subcommands 135

v The fully-qualified name is prefixed by the PREFIX and is suffixed by “exec” or

“clist”, unless the non-fully-qualified name already has the appropriate suffix.

v Procedure is run as the keyword specifies.
ex tools(mem1) exec

runs REXX exec “mem1” from: ‘slk27.tools.exec(mem1)’.

ex tools(mem2) clist

runs CLIST “mem2” from: ‘slk27.tools.clist(mem2)’.

ex tools.exec(mem1) exec

runs REXX exec “mem1” from: ‘slk27.tools.exec(mem1)’.

No need to add the “exec” suffix because the name already has the appropriate

suffix.

ex tools.clist(mem2) clist

runs CLIST “mem2” from: ‘slk27.tools.clist(mem2)’.

No need to add the “clist” suffix because the name already has the appropriate

suffix.

Example 2

Operation: Name is fully qualified, EXEC or CLIST keyword is specified.

Result:

v Fully-qualified name is as specified

v Procedure is run as the keyword specifies.
ex ‘sk127.tools.exec(mem1)’ exec

runs REXX exec “mem1” from: ‘slk27.tools.exec(mem1)’

ex ‘sk127.tools.clist(mem2)’ clist

runs CLIST “mem2” from: ‘slk27.tools.clist(mem2)’.

Example 3

Operation: Name is not fully qualified, EXEC or CLIST keyword is not specified.

Result:

v Fully-qualified name is prefixed by the PREFIX, and is suffixed by “clist”, unless

the non-fully-qualified name already has the appropriate suffix.

v Procedure is run as a REXX exec if the REXX string is found within a comment

in line 1 of the procedure. Otherwise, it is run as a CLIST.
ex tools(mem3)

runs “mem3” as REXX exec or CLIST depending on what is found in line 1 of

procedure “mem3”. Whether “mem3” is run as a REXX exec or a CLIST, it is read

from: ‘slk27.tools.clist(mem3)’.

ex tools.clist(mem3)

runs “mem3” as REXX exec or CLIST depending on what is found in line 1 of

procedure “mem3”. Whether “mem3” is run as a REXX exec or a CLIST, it is read

from: ‘slk27.tools.clist(mem3)’.

EXEC Command

136 z/OS V1R9.0 TSO/E Command Reference

No need to add the “clist” suffix because the name already has the appropriate

suffix.

Example 4

Operation: Name is fully qualified, EXEC or CLIST keyword is not specified.

Result:

v Fully-qualified name is as specified.

v Procedure is run as a REXX exec if the string REXX is found within a comment

in line 1 of the procedure. Otherwise, it is run as a CLIST.
ex ‘slk27.tools exec(mem3)’

runs “mem3” as REXX exec or CLIST depending on what is found in line 1 of

procedure “mem3”.

Using the (extended) implicit form of the EXEC command

When using the implicit form of the EXEC command, TSO/E finds the REXX exec

or CLIST as follows.

The following table lists the search order of the user-, application-, and system-level

libraries. Also shown are the ddnames associated with each library level. These

ddnames can be allocated either dynamically by the ALLOCATE command or

included as part of a logon procedure.

 Table 14. Library search order

Search

order Library level Associated ddname

1. User REXX exec SYSUEXEC

2. User CLIST SYSUPROC

3. Application REXX exec Define with FILE or DATASET operand

4. Application CLIST Define with FILE or DATASET operand

5. System REXX exec SYSEXEC (installation can define this

ddname)

6. System CLIST SYSPROC

With the defaults that TSO/E provides, and before an ALTLIB command is invoked,

TSO/E searches the system EXEC library (default ddname SYSEXEC) first,

followed by the system CLIST library (ddname SYSPROC). Note that your system

programmer can change this by

v Defining an alternate ddname of SYSEXEC

v Indicating that TSO/E is not to search the system-level exec ddname of

SYSEXEC. Then only the system-level CLIST (SYSPROC) is searched.

You can alter the default library search order by using either the ALTLIB command

or the EXECUTIL command.

v Use EXECUTIL to indicate that the system-level exec ddname is to be searched

for the duration of the current REXX language processor environment.

v Use ALTLIB to indicate that the system-level exec ddname is to be searched for

the duration of the current application. ALTLIB always overrides EXECUTIL within

an application.

Use ALTLIB DISPLAY to see which libraries are being searched for.

EXEC Command

Chapter 1. TSO/E commands and subcommands 137

The following example uses the implicit form of the EXEC command. It shows how

the procedure is run. In this example, assume that the TSO/E prefix is ‘slk27’.

Example 1

Operation: Run an implicit procedure.

Result:

v If the implicit procedure was found in the data set allocated to the SYSEXEC file,

it is run as a REXX exec.

v If the implicit procedure was found in the data set allocated to the SYSPROC file,

it is run as a REXX exec if the string REXX appears in a comment on line 1 of

the procedure. Otherwise, it is run as a CLIST.
%mem4

runs “mem4” as REXX exec, if “mem4” was found in SYSEXEC or runs “mem4” as

REXX exec or CLIST, depending on what is found in line 1 of procedure “mem4”, if

“mem4” was found in SYSPROC.

Considerations for passing quotation marks

Considerations for specifying parameters that contain single quotation marks

(apostrophes):

v implicit invocation - specify the exact string.

v explicit invocation - specify two apostrophes for each apostrophe within the

string. For example, to pass the string “It’s” specify:

It''s

To pass the three-parameter string “It’s 2 o’clock” specify:

It''s 2 o''clock

Considerations for specifying parameters that are quoted strings:

v implicit invocation:

– p_value - specify the exact string. For example, to pass the fully-qualified data

set name 'USER33.MASTER.BACKUP' specify:

'user33.master.backup'

– k_word('k_value') - to pass the same fully-qualified data set name as shown in

the previous example as a k_value, specify:

dsn('''user33.master.backup''')

v explicit invocation:

– p_value - specify two quotation marks for each enclosing quote. For example,

to pass the fully-qualified data set name 'USER33.MASTER.BACKUP' specify:

'''user33.master.backup'''

The outermost set of quotation marks is required as part of the syntax.

– k_word('k_value') - to pass the same fully-qualified data set name as shown in

the previous example as a k_value, specify

’dsn('’’’’’user33.master.backup’’’’’')’

The number of enclosing quotation marks must be doubled because the entire

specification is itself a quoted string.

EXEC Command

138 z/OS V1R9.0 TSO/E Command Reference

EXEC command return codes

 Table 15. EXEC command return codes

0 Processing successful.

12 Processing unsuccessful.

Other Return code is from the EXEC command exit routines or from the REXX

exec that was executed.

If your installation uses EXEC command exit routines and those routines indicate

that the reason code is used as the return code from EXEC, you may receive return

codes other than those listed. For more information about reason and return codes

from EXEC, see z/OS TSO/E Customization.

EXEC command examples

Example 1

Operation: Start a CLIST using the explicit form of EXEC.

Known:

v The name of the data set that contains the CLIST is

SLK27.USER.CLIST(MEMBER)

v The user’s TSO/E prefix is SLK27.
ex ’slk27.user.clist(member)’

Example 2

Operation: Start a CLIST to invoke the assembler.

Known:

v The name of the data set that contains the CLIST is RBJ21.FASM.CLIST.

v The CLIST consists of:

PROC 1 NAME

 free file(sysin,sysprint)

 delete (&name..list,&name..obj)

 allocate dataset(&name...asm) file(sysin) SHR keep

 allocate dataset(&name..list) file(sysprint) -

 block(132) space(300,100)

 allocate dataset(&name..obj) file(syspunch) block(80) -

 space(100,50)

 allocate file(sysut1) space(3,1) cylinders new delete

 allocate file(sysut2) space(3,1) cylinders new delete

 allocate file(sysut3) space(3,1) cylinders new delete

 allocate file(syslib) da(’d82ljp1.tso.macro’,

 ’sys1.maclib’) shr

 call ’*(ASMA90)’ ’deck,noobj,rent’

 free file(sysut1,sysin,sysprint, -

 syspunch,syslib)

 allocate file(sysin) da(*)

 allocate file(sysprint) da(*)

Note: You can use a period to delimit a symbolic variable. However, follow the

first period with another period. The first period is the delimiter that is

removed during symbolic substitution of the variable. The second period

remains unchanged.

v The module to be assembled is TGETASIS.

v You want to have the names of the commands in the CLIST displayed at your

terminal as they are executed.

EXEC Command

Chapter 1. TSO/E commands and subcommands 139

To execute the CLIST, enter:

exec fasm ’tgetasis’ list

The display at your terminal need to be similar to:

 EX FASM ’TGETASIS’ LIST

 FREE FILE(SYSIN,SYSPRINT)

 DELETE (TGETASIS.LIST,TGETASIS.OBJ)

 IDC0550I ENTRY (A) D82LJP1.TGETASIS.LIST DELETED

 IDC0550I ENTRY (A) D82LJP1.TGETASIS.OBJ DELETED

 ALLOCATE DATASET(TGETASIS.ASM) FILE(SYSIN) OLD KEEP

 ALLOCATE DATASET(TGETASIS.LIST) FILE(SYSPRINT)

 BLOCK(132) SPACE(300,100)

 ALLOCATE DATASET(TGETASIS.OBJ) FILE(SYSPUNCH)

 BLOCK(80) SPACE(100,50)

 ALLOCATE FILE(SYSUT1) SPACE(3,1) CYLINDERS NEW DELETE

 ALLOCATE FILE(SYSUT2) SPACE(3,1) CYLINDERS NEW DELETE

 ALLOCATE FILE(SYSUT3) SPACE(3,1) CYLINDERS NEW DELETE

 ALLOCATE FILE(SYSLIB) DA(’D82LJP1.TSO.MACRO’,

 ’SYS1.MACLIB’) SHR

 CALL ’*(ASMA90)’ ’DECK,NOOBJ,RENT’

 FREE FILE(SYSUT1,SYSUT2,SYSUT3,SYSIN,SYSPRINT,

 SYSPUNCH,SYSLIB)

 ALLOCATE FILE(SYSIN) DA(*)

 ALLOCATE FILE(SYSPRINT) DA(*)

 READY

Example 3

Operation: Assume that the CLIST in Example 2 has been stored in a CLIST

library, which was allocated to the SYSPROC file ID. Run the CLIST using the

implicit form of EXEC.

Known:

v The name of the member of the partitioned data set

v that contains the CLIST is FASM2.
fasm2 tgetasis

Example 4

Operation: Enter a fully-qualified data set name as a keyword value in an EXEC

command value list.

Known:

v The CLIST named SWITCH is contained in a CLIST library named

MASTER.CLIST which is allocated as SYSPROC.

v The CLIST consists of:

PROC 0 DSN1() DSN2()

RENAME &DSN1 TEMPSAVE

RENAME &DSN2 &DSN1

RENAME TEMPSAVE &DSN2

If you have a user ID of USER33 and you want to switch the names of two data

sets MASTER.BACKUP and USER33.GOODCOPY, you can invoke the CLIST as

follows:

Explicit form:

exec ’master.clist(switch)’ +

 ’dsn1(''''''master.backup'''''') +

 dsn2(goodcopy)’

Extended implicit form:

%switch dsn1('''master.backup''') dsn2(goodcopy)

EXEC Command

140 z/OS V1R9.0 TSO/E Command Reference

Note that when you use the implicit form, the specification of quoted strings in the

value list is made simpler because the value list itself is not a quoted string.

Example 5

Operation: Start a REXX exec using the explicit form of EXEC.

Known:

v The name of the data set that contains the REXX exec is

LMW18.USER.EXEC(MEMBER)

v The user’s TSO/E prefix is LMW18.
ex ’lmw18.user.exec(member)’ exec

Note that the exec operand used in this example is optional. When a fully quoted

data set name is specified, the exec operand (or CLIST operand when executing a

CLIST) is not required.

Example 6

Operation: Assume that the REXX exec in Example 5 has been stored in a REXX

library, which was allocated to the SYSEXEC file ID. Run the REXX exec using the

implicit form of EXEC.

Known:

v The name of the member of the partitioned data set that contains the REXX exec

is MEMBER.
member

Example 7

Operation: Enter a fully-qualified data set name as an argument in an explicitly

executed REXX exec.

Known:

v The REXX exec named SWITCH is contained in a REXX library named

MASTER.EXEC which is allocated to SYSPROC.

v The REXX exec consists of:

PARSE ARG dsn1 dsn2

’RENAME’ dsn1 ’TEMPSAVE’

’RENAME’ dsn2 dsn1

’RENAME TEMPSAVE’ dsn2

If you have a user ID of USER33 and you want to switch the names of two data

sets MASTER.BACKUP and USER33.GOODCOPY, you can invoke the REXX exec

as follows:

Explicit form:

exec 'master.exec(switch)' '''master.backup'' goodcopy’ exec

Extended implicit form:

%switch ’master.backup’ goodcopy

Note that when you use the implicit form, the specification of quoted strings in the

value list is made simpler because the value list itself is not a quoted string.

Example 8

Operation: Pass an argument string containing values separated by commas to a

REXX exec.

EXEC Command

Chapter 1. TSO/E commands and subcommands 141

Known:

v The REXX exec named GETARG is contained in a REXX library named

REXX.EXEC, which is allocated to file SYSEXEC.

v The REXX exec consists of:

PARSE ARG A ’,’ B

SAY ’Value of A is:’ A

SAY ’Value of B is:’ B

Implicit form:

GETARG 1,2

Extended implicit form:

%GETARG 1,2

Explicit form:

ex ’REXX.EXEC(GETARG)’ ’1,2’

Note: If you want to pass an argument string that contains values separated by

commas and the first value is null (that is, the argument string begins with a

comma), then the explicit form must be used.

For example, to pass the argument string “,3” to the GETARG exec, you must

specify:

ex ’REXX.EXEC(GETARG)’ ’,3’

In this case, GETARG is passed the two character argument string ″,3″. The

PARSE ARG A ’,’ B instruction parses the argument string to obtain a null value for

A, and a value of 3 for B.

If an implicit invocation is used, the leading comma is stripped from the argument

string passed to the exec. That is,

GETARG ,3

results in the 1 character string ″3″ being passed to the exec.

EXECUTIL command

The EXECUTIL command is a TSO/E REXX command that lets you change various

characteristics that control how an exec executes in the TSO/E address space. You

can use EXECUTIL:

v In an exec

v From TSO/E READY mode

v From ISPF - the ISPF command line or ISPF option 6 (enter a TSO/E command

or CLIST)

v In a CLIST. You can use EXECUTIL in a CLIST to affect exec processing.

However, it has no effect on CLIST processing.

You can also use EXECUTIL with the HI, HT, RT, TS, and TE operands from a

program that is written in a high-level programming language by using the TSO/E

service facility. From READY mode or ISPF, the HI, HT, and RT operands are not

applicable because an exec is not currently executing.

Use EXECUTIL to:

EXEC Command

142 z/OS V1R9.0 TSO/E Command Reference

v Specify whether the system exec library, whose default name is SYSEXEC, is to

be closed upon completion of the exec or is to remain open

v Start and stop tracing of an exec

v Stop the execution of an exec

v Suppress and resume terminal output from an exec

v Change entries in a function package directory

v Specify whether the system exec library (the default is SYSEXEC) is to be

searched in addition to SYSPROC.

Additional considerations for using EXECUTIL

v All of the EXECUTIL operands are mutually exclusive, that is, you can only

specify one of the operands on the command.

v The HI, HT, RT, TS, and TE operands on the EXECUTIL command are also, by

themselves, immediate commands. Immediate commands are commands that

can be issued from the terminal if an exec is executing and you press the

attention interrupt key and enter attention mode. These commands are

processed immediately. z/OS TSO/E REXX Reference, describes the immediate

commands.

v In general, EXECUTIL works on a language processor environment basis. That

is, EXECUTIL only affects the current environment in which EXECUTIL is issued.

For example, if you are in split screen in ISPF and issue EXECUTIL TS from the

second ISPF screen to start tracing, only execs that are invoked from that ISPF

screen are traced. If you invoke an exec from the first ISPF screen, the exec is

not traced.

Using the EXECDD and SEARCHDD operands may affect subsequent language

processor environments that are created. z/OS TSO/E REXX Reference,

describes the concept of language processor environments and how EXECUTIL

EXECDD and EXECUTIL SEARCHDD may affect more than one environment.

EXECUTIL command syntax

�� EXECUTIL EXECDD(CLOSE)

NOCLOSE

TS

TE

HT

RT

HI

RENAME

SEARCHDD(

NO

)

YES

 ��

RENAME

 RENAME NAME(function_name)

SYSNAME(sys_name)

DD(sys_dd)

EXECUTIL command operands

EXECDD(CLOSE | NOCLOSE)

Specifies whether the system exec library is to be closed upon completion of

the exec.

EXECUTIL Command

Chapter 1. TSO/E commands and subcommands 143

CLOSE

causes the system exec library, whose default name is SYSEXEC, to be

closed upon completion of the exec. This condition can be changed by

issuing the EXECUTIL EXECDD(NOCLOSE) command.

NOCLOSE

causes the system exec library to remain open upon completion of the

exec. This is the default condition and can be changed by issuing the

EXECUTIL EXECDD(CLOSE) command. The selected option remains in

effect until it is changed by the appropriate EXECUTIL command, or until

the current environment is terminated.

 The EXECDD operand affects the ddname specified in the LOADDD field in the

module name table. The default is SYSEXEC. z/OS TSO/E REXX Reference,

describes the module name table in detail.

 Any libraries defined using the ALTLIB command are not affected by the

EXECDD operand. SYSPROC is also not affected.

Note: Specify EXECDD(CLOSE) or EXECDD(NOCLOSE) before running any

execs out of the SYSEXEC file. If you attempt to use EXECDD(CLOSE)

or EXECDD(NOCLOSE) after SYSEXEC has been opened, you might

not get the desired result because the SYSEXEC file must be closed at

the same MVS task level at which it was opened.

TS

Use TS (Trace Start) to start tracing execs. Tracing lets you interactively control

the execution of an exec and debug problems. For more information about the

interactive debug facility, see z/OS TSO/E REXX Reference.

 If you issue EXECUTIL TS from READY mode or ISPF, tracing is started for the

next exec you invoke. Tracing is then in effect for that exec and any other

execs it calls. Tracing stops:

v When the original exec completes

v If one of the invoked execs specifies EXECUTIL TE

v If one of the invoked execs calls a CLIST, which specifies EXECUTIL TE

v If you enter attention mode while an exec is executing and issue the TE

immediate command.

If you use EXECUTIL TS in an exec, tracing is started for all execs that are

executing. This includes the current exec that contains EXECUTIL TS, any

execs it invokes, and any execs that were executing when the current exec was

invoked. Tracing remains active until all currently executing execs complete or

an exec or CLIST contains EXECUTIL TE.

 For example, suppose exec A calls exec B, which then calls exec C. If exec B

contains the EXECUTIL TS command, tracing is started for exec B and remains

in effect for both exec C and exec A. Tracing stops when exec A completes.

However, if one of the execs contains EXECUTIL TE, tracing stops for all of the

execs.

 If you use EXECUTIL TS in a CLIST, tracing is started for all execs that are

executing, that is, for any exec the CLIST invokes or execs that were executing

when the CLIST was invoked. Tracing stops when the CLIST and all currently

executing execs complete or if an exec or CLIST contains EXECUTIL TE. For

EXECUTIL Command

144 z/OS V1R9.0 TSO/E Command Reference

example, suppose an exec calls a CLIST and the CLIST contains the

EXECUTIL TS command. When control returns to the exec that invoked the

CLIST, that exec is traced.

 You can use EXECUTIL TS from a program by using the TSO/E service facility.

For example, suppose an exec calls a program and the program encounters an

error. The program can invoke EXECUTIL TS using the TSO/E service facility to

start tracing all execs that are currently executing.

 You can also press the attention interrupt key, enter attention mode, and then

enter TS to start tracing or TE to stop tracing. z/OS TSO/E REXX Reference,

describes the TS and TE immediate commands.

TE

Use TE (Trace End) to end tracing execs. The TE operand is not applicable in

READY mode because an exec is not currently running. However, if you issued

EXECUTIL TS to trace the next exec you invoke and then issued EXECUTIL

TE, the next exec you invoke is not traced.

 If you use EXECUTIL TE in an exec or CLIST, tracing is ended for all execs

that are currently running. This includes execs that were executing when the

exec or CLIST was invoked and execs that the exec or CLIST calls. For

example, suppose exec A calls CLIST B, which then calls exec C. If tracing was

on and CLIST B contains EXECUTIL TE, tracing is stopped and execs C and A

are not traced.

 You can use EXECUTIL TE from a program by using the TSO/E service facility.

For example, suppose tracing has been started and an exec calls a program.

The program can invoke EXECUTIL TE using the TSO/E service facility to stop

tracing of all execs that are currently executing.

 You can also press the attention interrupt key, enter attention mode, and then

enter TE to stop tracing. z/OS TSO/E REXX Reference, describes the TE

immediate command.

HT

Use HT (Halt Typing) to suppress terminal output generated by an exec. The

exec continues executing. HT suppresses any output generated by REXX

instructions or functions (for example, the SAY instruction) and REXX

informational messages. REXX error messages are still displayed. Normal

terminal output resumes when the exec completes. You can also use

EXECUTIL RT to resume terminal output.

 HT has no effect on CLISTs or commands. If an exec invokes a CLIST and the

CLIST generates terminal output, the output is displayed. If an exec invokes a

command, the command displays messages.

 Use the HT operand in either an exec or CLIST. You can also use EXECUTIL

HT from a program by using the TSO/E service facility. If the program invokes

EXECUTIL HT, terminal output from all execs that are currently executing is

suppressed. EXECUTIL HT is not applicable from READY mode or ISPF

because no execs are currently executing.

 If you use EXECUTIL HT in an exec, output is suppressed for all execs that are

executing. This includes the current exec that contains EXECUTIL HT, any

execs the exec invokes, and any execs that were executing when the current

exec was invoked. Output is suppressed until all currently executing execs

complete or an exec or CLIST contains EXECUTIL RT.

EXECUTIL Command

Chapter 1. TSO/E commands and subcommands 145

If you use EXECUTIL HT in a CLIST, output is suppressed for all execs that are

executing, that is, for any exec the CLIST invokes or execs that were executing

when the CLIST was invoked. Terminal output resumes when the CLIST and all

currently executing execs complete or if an exec or CLIST contains EXECUTIL

RT.

 For example, suppose exec A calls CLIST B, which then calls exec C. If the

CLIST contains EXECUTIL HT, output is suppressed for both exec A and exec

C.

 If you use EXECUTIL HT and want to display terminal output using the SAY

instruction, you must use EXECUTIL RT before the SAY instruction to resume

terminal output.

RT

Use RT (Resume Typing) to resume terminal output that was previously

suppressed. Use the RT operand in either an exec or CLIST. You can also use

EXECUTIL RT from a program by using the TSO/E service facility. If the

program invokes EXECUTIL RT, terminal output from all execs that are currently

executing is resumed. EXECUTIL RT is not applicable from READY mode or

ISPF because no execs are currently executing.

 If you use EXECUTIL RT in an exec or CLIST, typing is resumed for all execs

that are executing.

HI Use HI (Halt Interpretation) to halt the interpretation of all execs that are

currently running in the language processor environment. From either an exec

or a CLIST, EXECUTIL HI halts the interpretation of all execs that are currently

running. If an exec calls a CLIST and the CLIST contains EXECUTIL HI, the

exec that invoked the CLIST stops processing.

 EXECUTIL HI is not applicable from READY mode or ISPF because no execs

are currently executing.

 You can use EXECUTIL HI from a program by using the TSO/E service facility.

If the program invokes EXECUTIL HI, the interpretation of all execs that are

currently running is halted.

 If an exec enables the halt condition trap and the exec includes the EXECUTIL

HI command, the interpretation of the current exec and all execs the current

exec invokes is halted. However, any execs that were executing when the

current exec was invoked are not halted. These execs continue executing. For

example, suppose exec A calls exec B, exec B specifies EXECUTIL HI and also

contains a SIGNAL ON HALT instruction (with a HALT: label). When EXECUTIL

HI is processed, control is given to the HALT subroutine. When the subroutine

completes, exec A continues executing at the statement that follows the call to

exec B. For more information about the SIGNAL instruction, see z/OS TSO/E

REXX Reference.

RENAME

Use EXECUTIL RENAME to change entries in a function package directory. A

function package directory contains information about the functions and

subroutines that make up a function package. z/OS TSO/E REXX Reference,

describes function packages and a function package directory.

 A function package directory contains the following fields for each function and

subroutine:

v Function_name -- the name of the external function or subroutine that is used

in an exec.

EXECUTIL Command

146 z/OS V1R9.0 TSO/E Command Reference

v Addr -- the address, in storage, of the entry point of the function or

subroutine code.

v Sys_name -- the name of the entry point in a load module that corresponds

to the code that is called for the function or subroutine.

v Sys_dd -- the name of the DD from which the function or subroutine code is

loaded.

You can use EXECUTIL RENAME with the SYSNAME and DD operands to

change an entry in a function package directory as follows:

v Use the SYSNAME operand to change the sys_name of the function or

subroutine in the function package directory. When an exec invokes the

function or subroutine, the routine with the new sys_name is invoked.

v Use EXECUTIL RENAME NAME(function_name) without the SYSNAME and

DD operands to flag the directory entry as null. This causes the search for

the function or subroutine to continue because a null entry is bypassed. The

system will then search for a load module and an exec or both. z/OS TSO/E

REXX Reference, describes the complete search order.

EXECUTIL RENAME clears the addr field in the function package directory to

X'00'. When you change an entry, the name of the external function or

subroutine is not changed, but the code that the function or subroutine invokes

is replaced.

 You can use EXECUTIL RENAME to change an entry so that different code is

used.

NAME(function_name)

specifies the name of the external function or subroutine that is used in an

exec. This is also the name in the function_name field in the directory entry.

SYSNAME(sys_name)

specifies the name of the entry point in a load module that corresponds to

the package code that is called for the function or subroutine. If SYSNAME

is omitted, the sys_name field in the package directory is set to blanks.

DD(sys_dd)

specifies the name of the DD from which the package code is loaded. If DD

is omitted, the sys_dd field in the package directory is set to blanks.

SEARCHDD(YES | NO)

specifies whether the system exec library (the default is SYSEXEC) should be

searched when execs are implicitly invoked.

YES

indicates that the system exec library (SYSEXEC) is searched, and if the

exec is not found, SYSPROC is then searched.

NO

indicates that SYSPROC only is searched.

 EXECUTIL SEARCHDD lets you dynamically change the search order.

Note: EXECUTIL SEARCHDD generally affects the current language processor

environment in which it is invoked. If you use EXECUTIL SEARCHDD

from TSO/E READY mode, when you invoke ISPF, the new search order

may also be in effect for ISPF. This depends on the values your

installation uses for the initialization of a language processor

EXECUTIL Command

Chapter 1. TSO/E commands and subcommands 147

environment. For more information about how the search order is defined

and how it can be changed, see z/OS TSO/E REXX Reference.

ALTLIB affects how EXECUTIL operates to determine the search order. If you

use ALTLIB to indicate that user-level, application-level, or system-level libraries

are to be searched, ALTLIB operates on an application basis. For more

information, see “ALTLIB command” on page 55.

 If you use EXECUTIL SEARCHDD, the new search order remains in effect until

you issue EXECUTIL SEARCHDD again, the language processor environment

terminates, or you use ALTLIB.

EXECUTIL command return codes

 Table 16. EXECUTIL command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

EXECUTIL command examples

Example 1

Operation: Your installation uses both SYSEXEC and SYSPROC to store execs

and CLISTs. All of the execs you work with are stored in SYSEXEC and your

CLISTs are stored in SYSPROC. Currently, your system searches SYSEXEC and

SYSPROC and you do not use ALTLIB.

You want to work with CLISTs only and do not need to search SYSEXEC. To

change the search order and have the system search SYSPROC only, use the

following command:

EXECUTIL SEARCHDD(NO)

Example 2

Operation: You are updating an exec and including a new internal subroutine. You

want to trace the subroutine to test for any problems. In your exec, include

EXECUTIL TS at the beginning of your subroutine and EXECUTIL TE when the

subroutine returns control to the main program. For example:

/* REXX program */

MAINRTN: ...
CALL SUBRTN

EXECUTIL TE ...
EXIT

/* Subroutine follows */

SUBRTN:

EXECUTIL TS ...
RETURN

Example 3

Operation: You want to invoke an exec and trace it. The exec does not contain

EXECUTIL TS or the TRACE instruction. Instead of editing the exec and including

EXECUTIL TS or a TRACE instruction, you can enter the following from READY

mode:

EXECUTIL TS

EXECUTIL Command

148 z/OS V1R9.0 TSO/E Command Reference

When you invoke the exec, the exec is traced. When the exec completes executing,

tracing is off.

Example 4

Operation: Suppose an external function called PARTIAL is part of a function

package. You have written your own function called PARTIAL or a new version of

the external function PARTIAL and want to execute your new PARTIAL function

instead of the one in the function package. Your new PARTIAL function may be an

exec or may be stored in a load module. You must flag the entry for the PARTIAL

function in the function package directory as null in order for the search to continue

to execute your new PARTIAL function. To flag the PARTIAL entry in the function

package directory as null, use the following command:

EXECUTIL RENAME NAME(PARTIAL)

When you execute the function PARTIAL, the null entry for PARTIAL in the function

package directory is bypassed. The system will continue to search for a load

module and exec or both that is called PARTIAL.

FREE command

Use the FREE command to release (deallocate) previously allocated data sets or

UNIX file system files that you no longer need. You can also use this command to

change the output class of SYSOUT data sets, to delete attribute lists, and to

change the data set disposition specified with the ALLOCATE command.

There is a maximum number of data sets that can be allocated to you at any one

time. The allowable number must be large enough to accommodate:

v Data sets allocated by the LOGON and ALLOCATE commands

v Data sets allocated dynamically by the system’s command processors

The data sets allocated by the LOGON and ALLOCATE commands are not freed

automatically. To avoid the possibility of reaching your limit and being denied

necessary resources, you should use the FREE command to release these data

sets when they are no longer needed.

When a SYSOUT data set is freed, it is immediately available for output processing,

either by the job entry subsystem (not-held data sets) or by the OUTPUT command

(held data sets).

When you free SYSOUT data sets, you can change their output class to make them

available for processing by an output writer, or route them to another user.

When you enter the LOGOFF command, all data sets allocated to you and attribute

lists created during the terminal session are freed by the system.

UNALLOC is the alias of FREE and is intended for use under TEST because FREE

is an alias for the FREEMAIN subcommand.

Note: Data sets that are dynamically allocated by a command processor are not

automatically freed when the command processor terminates. You must

explicitly free dynamically allocated data sets.

FREE command syntax

EXECUTIL Command

Chapter 1. TSO/E commands and subcommands 149

�� FREE

�

�

�

�

�

 ALL

ATTRLIST(

attr_list_name

)

DSNAME

(

data_set_name

)

DATASET

DDNAME

(

file_name

)

FILE

OUTDES(

output_descriptor_name

)

 �

�

DEST(station_id)

HOLD

NOHOLD

 KEEP

DELETE

CATALOG

UNCATALOG

SYSOUT(class)

SPIN(

UNALLOC

)

NO

�

�

�

PATH(

/pathname

)

KEEP

PATHDISP(

DELETE

)

 ��

Note: DELETE is the only disposition that is valid for SYSOUT data sets.

FREE command operands

ALL

requests deallocation of all dynamically allocated data sets, files, and attribute

lists that are not marked in-use.

DSNAME(data_set_name) | DATASET(data_set_name)

specifies one or more data set names that identify the data sets that you want

to free. The data set name must include the descriptive (rightmost) qualifier and

can contain a member name in parentheses. If you omit this operand, you must

specify either FILE, DDNAME, or the ATTRLIST operand.

DDNAME(file_name) | FILE(file_name)

specifies one or more file names that identify the data sets to be freed. If you

omit this operand, you must specify either the DATASET or DSNAME or the

ATTRLIST operand.

ATTRLIST(attr_list_names)

specifies the names of one or more attribute lists that you want to delete. If you

omit this operand, you must specify either the DATASET or DSNAME or the

FILE or DDNAME operand.

DEST(station_id)

specifies a name of a remote workstation to which the SYSOUT data sets are

directed when ready for deallocation. The station ID is a 1 to 8 character name.

If this operand is omitted on the FREE command for SYSOUT data sets, the

data sets are directed to the workstation specified at the time of allocation.

FREE Command

150 z/OS V1R9.0 TSO/E Command Reference

HOLD | NOHOLD

HOLD

specifies the data set is to be placed on the HOLD queue. HOLD overrides

any HOLD/NOHOLD specification made when the data set was originally

allocated and it also overrides the default HOLD/NOHOLD specification

associated with the particular SYSOUT class specified.

NOHOLD

specifies the data set is not to be placed on the HOLD queue. NOHOLD

overrides any HOLD/NOHOLD specification made when the data set was

originally allocated and it also overrides the default HOLD/NOHOLD

specification associated with the particular SYSOUT class specified.

KEEP | DELETE | CATALOG | UNCATALOG | SYSOUT(class)

KEEP

specifies the data set is to be retained by the system after it is freed.

DELETE

specifies the data set is to be deleted by the system after it is freed.

DELETE is not valid for data sets allocated with SHR or for members of a

partitioned data set. Only DELETE is valid for SYSOUT data sets.

CATALOG

specifies the data set is to be retained by the system in a catalog after it is

freed.

UNCATALOG

specifies the data set is to be removed from the catalog after it is freed. The

data set is still retained by the system.

SYSOUT(class)

specifies an output class which is represented by a single character. All of

the system output (SYSOUT) data sets specified in the DATASET or

DSNAME and FILE or DDNAME operands are assigned to this class and

placed in the output queue for processing by an output writer. To free a file

to SYSOUT, the file must have previously been allocated to SYSOUT.

 The changed SYSOUT class characteristics are used in processing the

output with the exception of the spool space allocation attribute. The spool

space allocation for the SYSOUT data set is unchanged from what was

specified at data set allocation time, either through SYSOUT class definition

in JES or through the dynamic allocation parameters

 A concatenated data set that was allocated in a LOGON procedure or by

the ALLOCATE command can be freed only by entering the ddname on the

FILE or DDNAME operand. It can also be freed by entering FREE ALL.

 If HOLD, NOHOLD, KEEP, DELETE, CATALOG, and UNCATALOG are not

specified, the specification indicated at the time of allocation remains in effect.

OUTDES(output_descriptor_name)

specifies a list of output descriptor names, previously defined by the OUTDES

command, that are to be freed. Only output descriptors defined by the OUTDES

command are freed. You cannot free output descriptors defined in the LOGON

procedure.

 For more information about the OUTDES command, see the “OUTDES

command” on page 197.

FREE Command

Chapter 1. TSO/E commands and subcommands 151

|
|
|
|
|

|
|
|
|
|

|
|
|

SPIN(UNALLOC | NO)

specifies when the system should make the SYSOUT data set available for

printing.

UNALLOC

specifies that the system should make the SYSOUT data set available for

printing immediately after deallocation.

NO

specifies that the system should make the SYSOUT data set available for

printing at the end of the step.

Notes:

1. If the SPIN keyword is not specified, FREE does not change the SPIN value

of the SYSOUT data set.

2. When the SPIN keyword is specified, you must also specify UNALLOC or

NO. If you specify a parameter that is not UNALLOC or NO, or the

parameter is missing, FREE will prompt you to specify the parameter.

3. The SPIN keyword specified on the FREE command overrides the SPIN

keyword specified on the ALLOCATE command.

4. If the SEGMENT keyword is specified on the ALLOCATE command, the

system prints the SYSOUT data set regardless of the SPIN specification on

either the ALLOCATE command or FREE command.

PATH(/pathname)

identifies a UNIX file system file.

 A pathname consists of the names of the directories from the root to the file

being identified, and the name of the file. The form is /name1/name2/.../namen.

 A pathname begins with a slash (/). The system treats any consecutive slashes

like a single slash. The pathname can be 2 to 250 characters, including the

slash.

 Values for pathname consist of printable characters from X'40' to X'FE'. Enclose

the pathname in apostrophes if it contains any character other than the

following characters:

Upper case letters Numbers

Special characters (#,$, or @) Slash (/)

Asterisk (*) Plus (+)

Hyphen (-) Period (.)

Ampersand (&)

A pathname is case sensitive. Thus, ’/usr/joe’ and /usr/JOE define two

different files.

PATHDISP(KEEP | DELETE)

modifies the disposition of a UNIX file as part of DEALLOCATION or FREE

processing.

KEEP

specifies that the file should be kept after processing.

DELETE

specifies that the file should be deleted after processing.

FREE command return codes

 Table 17. FREE command return codes

0 Processing successful.

FREE Command

152 z/OS V1R9.0 TSO/E Command Reference

Table 17. FREE command return codes (continued)

12 One of the following occurred:

v Processing unsuccessful. An error message was issued.

v The file or data set was deallocated, but the disposition specified on

the FREE command was overridden by the disposition of the file or

data set. An informational message was issued.

FREE command examples

Example 1

Operation: Free a data set by specifying its data set name.

Known:

v The data set name: TOC903.PROGA.LOAD
free dataset(proga.load)

Example 2

Operation: Free three data sets by specifying their data set names.

Known:

v The data set names: APRIL.PB99CY.ASM, APRIL.FIRSTQTR.DATA,

MAY.DESK.MSG
free dataset(pb99cy.asm,firstqtr.data,’may.desk.msg’)

Example 3

Operation: Free five data sets by specifying data set names or data definition

names. Change the output class for any SYSOUT data sets being freed.

Known:

v The name of a data set: WIND.MARCH.FORT

v The file names (data definition names) of 4 data sets: SYSUT1 SYSUT3 SYSIN

SYSPRINT

v The new output class: B
free dataset(march.fort) file(sysut1,sysut3,sysin,+

 sysprint) sysout(b)

Example 4

Operation: Delete two attribute lists.

Known:

v The names of the lists: DCBPARMS ATTRIBUT
free attrlist(dsbparms attribut)

Example 5

Operation: Free all dynamically allocated data sets, files, and attribute lists.

free all

Example 6

Operation: Free a file and the dynamic output descriptor.

Known:

v The name of the file: SYSPRINT

v The name of the output descriptor: MULTCOPY
free file(sysprint) outdes(multcopy)

FREE Command

Chapter 1. TSO/E commands and subcommands 153

Example 7

Operation: Free a file and make the data set available for printing immediately after

deallocation.

Known:

v The name of the file: SYSPRINT
free file(sysprint) spin(unalloc)

Example 8

Operation: Release a UNIX file.

Known:

v The ddname: OUTPUT

v The pathname: /u/userid/file.dbp

v The disposition: DELETE
free path(’/u/userid/file.dbp’) +

 pathdisp(delete)

HELP command

Use the HELP command or subcommand to obtain information about the function,

syntax, and operands of commands and subcommands, and information about

certain messages. This reference information is contained within the system and is

displayed at your terminal in response to your request for help. By entering the

HELP command or subcommand with no operands, you can obtain a list of all the

TSO/E commands grouped by function or subcommands of the command you are

using.

You cannot use the HELP command to get additional information about CLIST

statements.

Note: The HELP command is valid only in READY mode.

Information available through HELP

The scope of available information ranges from general to specific. The HELP

command or subcommand with no operands produces a list of valid commands or

subcommand and their basic functions. From the list you can select the command

or subcommand most applicable to your needs. If you need more information about

the selected command or subcommand, you can use HELP again, specifying the

selected command or subcommand name as an operand. You then receive:

v A brief description of the function of the command or subcommand

v The format and syntax for the command or subcommand

v A description of each operand

You can obtain information about a command or subcommand only when the

system is ready to accept a command or subcommand.

If you do not want to have all of the detailed information, you can request only the

portion that you need.

The information about the commands is contained in a cataloged partitioned data

set named SYS1.HELP. Information for each command or subcommand is kept in a

member of the partitioned data set. The HELP command or subcommand causes

the system to select the appropriate member and display its contents at your

terminal.

FREE Command

154 z/OS V1R9.0 TSO/E Command Reference

Figure 2 shows the hierarchy of the sets of information available with the HELP

command or subcommand. It also shows the form of the command or subcommand

necessary to produce any particular set.

When the system is ready
to accept a command, you
can request:

When the system is ready to accept
a subcommand, you can request:

4 Command syntax

5 List of operands

6 Each operand

7 Positional operand

13 MSGID(list)

2 List of subcommands

8 Subcommand function

9 Subcommand syntax

10 List of operands

11 Each operand

12 Positional operand

14 MSGID(list)

R
E

A
DY

 m
od

e
E

D
IT

,O
U

T
P

U
T,

a
n

d
T

E
S

T
 m

o
d

e
s

HELP

HELP commandname

HELP commandname ALL

HELP commandname FUNCTION

HELP commandname SYNTAX

HELP commandname OPERANDS

HELP commandname OPERANDS (list of keyword operands)

HELP commandname POSITIONAL (positional operand number)

HELP commandname MSGID (list of message IDs)

1

3 4 5

3 4 5

3

4

5

6

7

13

8 9 10

8 9 10

8

9

10

11

12

14

This form of the command...produces:

or:

or:

2
HELP

HELP subcommandname

HELP subcommandname ALL

HELP subcommandname FUNCTION

HELP subcommandname SYNTAX

HELP subcommandname OPERANDS

HELP subcommandname OPERANDS (list of keyword operands)

HELP subcommandname POSITIONAL (positional operand number)

HELP subcommandname MSGID (list of message IDs)

3 Command function

1 List of commands

Figure 2. Information available through the HELP command

HELP Command

Chapter 1. TSO/E commands and subcommands 155

HELP command syntax

�� HELP

H

command_name

Operands

subcommand_name

 ��

Operands

�

�

 ALL

FUNCTION

SYNTAX

OPERANDS

(

operand

)

POSITIONAL(nn)

MSGID(

identifier

)

HELP command operands

command_name | subcommand_name

specifies the name of the command or subcommand that you want to know

more about.

FUNCTION

specifies that you want to know more about the purpose and operation of the

command or subcommand.

SYNTAX

specifies you want to know more about the syntax required to use the

command or subcommand properly.

OPERANDS(operand)

specifies you want to see explanations of the operands for the command or

subcommand. When you specify the keyword OPERANDS and omit any values,

all operands are described. You can specify particular keyword operands that

you want to have described by including them as values within parentheses

following the keyword. If you specify a list of more than one operand, the

operands in the list must be separated by commas or blanks.

 For best results, do not enter abbreviations as operand. HELP does not use

aliases, as opposed to TSO/E commands. For example, DA is a valid alias for

the DATASET operand of the ALLOCATE command, but is ambiguous if used

as HELP ALLOCATE OPERANDS(DA). Therefore, specify the full operand as in

HELP ALLOCATE OPERANDS(DATASET).

POSITIONAL(nn)

specifies that you want to obtain information about a particular positional

operand of the command or subcommand. You can specify the positional

operand that you want described by the number (nn) of the operand in the

sequence of positional operands. The first positional operand needs to be

identified as ‘1’, the second as ‘2’, and so on. You can obtain information about

the positional operands of the following commands and any of their

subcommands:

HELP Command

156 z/OS V1R9.0 TSO/E Command Reference

v ACCOUNT

v ATTRIB

v CALL

v CANCEL

v EDIT

v EXEC

v HELP

v LOGON

v MVSSERV

v OUTPUT

v RUN

v SEND

v TEST

v TRANSMIT.

ALL

specifies you want to see all information available concerning the command or

subcommand. If no other keyword operand is specified, then ALL is the default.

MSGID(list)

specifies you want to get additional information about MVSSERV, VSBASIC,

TRANSMIT, or RECEIVE messages whose message identifiers are given in the

list. Information includes what caused the error and how to prevent a

recurrence. You cannot specify the FUNCTION, SYNTAX, OPERANDS, or ALL

operands with MSGID.

HELP command return codes

 Table 18. HELP command return codes

0 Processing successful.

12 Processing unsuccessful.

HELP command examples

Example 1

Operation: Obtain a list of all available commands.

help

Example 2

Operation: Obtain all the information available for the ALLOCATE command.

help allocate

Example 3

Operation: Have a description of the XREF, MAP, COBLIB, and OVLY operands for

the LINK command displayed at your terminal.

h link operands(xref,map,coblib,ovly)

Example 4

Operation: Have a description of the function and syntax of the LISTBC command

displayed at your terminal.

h listbc function syntax

Example 5

Operation: Obtain information about the ATTRIB command positional operand.

help attrib positional(1)

HELP Command

Chapter 1. TSO/E commands and subcommands 157

Example 6

Operation: Obtain information about the third positional operand of the RENUM

subcommand of EDIT.

help renum positional(3)

LINK command

Use the LINK command to invoke the binder or linkage editor service programs.

The binder and linkage editor convert one or more object modules (the output

modules from compilers) into a load module or program object suitable for

execution. In doing this, the binder and linkage editor change all symbolic

addresses in the object modules into relative addresses.

The binder and linkage editor provide a great deal of information to help you test

and debug a program. This information includes a cross-reference table and a map

of the module that identifies the location of control sections, entry points, and

addresses. You can have this information listed at your terminal or saved in a data

set.

You can change binder defaults. The changes replace the defaults for the LINK

command. For more information about changing binder defaults, see z/OS MVS

Program Management: User’s Guide and Reference.

You might want to use the LOADGO command as an alternative to the LINK

command, if:

v The module that you want to process has a simple structure; that is, it is

self-contained and does not pass control to other modules.

v You do not require the extensive listings produced by the binder or linkage editor.

v You do not want a load module or program object saved in a library.

LINK command syntax

��

�

LINK(

dataset

)

LOAD

(data_set_name)

�

�
 NOPRINT

PRINT(

*

)

data_set_name

24

AMODE(

)

31

64

ANY

MIN

 BINDER

NOBINDER

�

HELP Command

158 z/OS V1R9.0 TSO/E Command Reference

�
 CALL

NOCALL

NCAL

NONCAL

UPPER

CASE(

)

MIXED

MIN

COMPAT(

)

PM5

PM4

PM3

PM2

PM1

LKED

CURRENT

CURR

release

�

�
FILL(fill_byte)

NO

HOBSET(

)

YES

 �

�
NOPACK

,NOPRIME

FETCHOPT(

)

PACK

,PRIME

24

RMODE(

)

ANY

SPLIT

 �

�

�

LIB(

data_set

)

�

PLILIB

PLICMIX

PLIBASE

FORTLIB

COBLIB

NOMAP

MAP

NOLET

LET

LET(

)

0

4

8

12

�

�
 NOXCAL

XCAL

 NOXREF

XREF

 NOREUS

REUS

60

LINECT(

)

line_count

�

�
LIST

SUMMARY

LIST(

OFF

)

STMT

NOIMPORT

ALL

NOLIST

0

MSGLEVEL(

)

4

8

12

MAXBLK(integer)
 �

LINK Command

Chapter 1. TSO/E commands and subcommands 159

�

WKSPACE(

)

value1

,value2

SSI(ssi_word)

 NOSTORENX

STORENX (NO)

STORENX(NEVER)

STORENX

�

�
 NOREFR

REFR

 NOSCTR

SCTR

 NOOVLY

OVLY

 NORENT

RENT

�

�

SIZE(integer_1 integer_2)

 NONE

NE

 NOOL

OL

 NODC

DC

 NOTEST

TEST

�

�
 NOTERM

TERM

DCBS(block_size)

AC(authorization_code)

�

�
EP(entryname)

COMPRESS(

)

YES

NO

AUTO

LISTPRIV(

YES

)

NO

 �

�

NOINFO

MODMAP(

NO

)

INFO

LOAD

NOLOAD

 ��

LINK command operands

data_set

specifies the names of one or more data sets containing your object modules.

The specified data sets are concatenated within the output load module in the

sequence that they are included in this operand. If there is only a single name

in the data_set list, parentheses are not required unless the single name is a

member name of a partitioned data set; then, two pairs of parentheses are

required, as in:

link((parts))

You can substitute an asterisk (*) for a data set name to indicate that you can

enter control statements from your terminal. The system prompts you to enter

the control statements. A null line indicates the end of your control statements.

LOAD(data_set_name)

specifies the name of the partitioned data set that contains or will contain the

load module after processing by the linkage editor. If you omit this operand, the

system generates a name according to the data set naming conventions. After

LINK Command

160 z/OS V1R9.0 TSO/E Command Reference

|
|
|

processing by the binder or linkage editor, the binder rejects a PDS or PDSE

with a record format other than RECFM=U.

PRINT(data_set_name | *)

specifies linkage editor listings are to be produced and placed in the specified

data set. When you omit the data set name, the data set that is generated is

named according to the data set naming conventions. If you specify LIST, MAP,

or XREF operand, then PRINT is the default. If you want to have the listings

displayed at your terminal, you can substitute an asterisk (*) for the data set

name.

NOPRINT

specifies no linkage editor listings are to be produced. This operand causes the

MAP, XREF, and LIST options to become incorrect. If both PRINT and

NOPRINT are omitted and you do not use the LIST, MAP, or XREF operand,

then NOPRINT is the default.

AMODE(24 | 31 | 64 | ANY | MIN)

specifies the addressing mode for all entry points for the module to be

link-edited or bound. For more information about defaulting AMODE, see z/OS

MVS Program Management: User’s Guide and Reference.

 Valid AMODE values are:

24 to indicate the module is to be invoked in 24-bit addressing mode.

31 to indicate the module is to be invoked in 31-bit addressing mode.

64 to indicate the module is to be invoked in 64-bit addressing mode.

ANY to indicates the module is to be involked in 24-bit or 31-bit addressing

mode.

MIN causes the binder to set the AMODE to the most restrictive AMODE of

all control sections in the module. In this respect, 24 is more restrictive

than 31, which is more restrictive than ANY.

 The MIN keyword is used only to control binder processing. It assists

the binder in determining the resultant AMODE of the module. However,

MIN is never used as an AMODE itself and will not appear in the

directory entry of the resultant load module or program object. MIN only

has meaning when specified for PDSEs on a system with DFSMS/MVS

V1R1 or later installed.

BINDER | NOBINDER

BINDER

specifies that MVS use binder services for this load module or object

module rather than the linkage editor service program. The binder can be

used for load modules stored in a PDS and program objects in a PDSE or

Unix file. BINDER is the default.

NOBINDER

specifies that MVS not use binder services for this object module; the

linkage editor service program is used to convert the object module(s) into

load module(s).

CALL | NCAL | NONCAL | NOCALL

CALL | NONCAL

specifies that the automatic call mechanism is to be used to bring in

additional modules for unresolved external references. CALL is the default.

LINK Command

Chapter 1. TSO/E commands and subcommands 161

|
|

NCAL | NOCALL

specifies that the automatic call mechanism is not to be used for unresolved

external references.

CASE(UPPER | MIXED)

UPPER

specifies that the binder translates to uppercase all lowercase names found

in input modules, control statements, and LINK parameters. UPPER is the

default.

MIXED

specifies that the binder respect uppercase and lowercase names found in

input modules, control statements, and LINK parameters, and treat two

strings differently if a character in one string is a different case than the

corresponding character in the second string. Binder keywords are always

translated to uppercase.

COMPAT(MIN | PM5 | PM4 | PM3 | PM2 | PM1 | LKED | CURR | CURRENT |

release)

specifies binder compatibility level.

MIN

specifies the oldest level (PM2 or higher) that supports the features in the

object. This is the default.

CURRENT

indicates the latest level known to the binder.

 Programs bound with this option might not be usable on older releases of

z/OS.

CURR

is the abbreviation of CURRENT and has the same specification.

PM5

supports all features of lower levels plus cross-segment references by

either relative or immediate instruction.

PM4

is the minimum level that can be specified if a value of 64 is specified on

the AMODE option or if input modules contain 8-byte address constants or

names longer than 1024 characters.

PM3

specifies that the binder create a PM3-level program object.

PM2

specifies that the binder create a PM2-level program object.

PM1

specifies that the binder create a PM1-level program object.

LKED

specifies that the binder process certain options, such as AMODE/RMODE

and reusability, in a manner compatible with the linkage editor.

release

v OSV2R8 through OSV210 (same as PM3)

v ZOSV1R1 and ZOSV1R2 (same as PM3)

v ZOSV1R3 and ZOSV1R4 (same as PM4)

v ZOSV1R5 and ZOSV1R6 (adds RMODE 64 for WSA)

LINK Command

162 z/OS V1R9.0 TSO/E Command Reference

v ZOSV1R7 (adds compression and relative/immediate hardware

instruction references across elements)

v ZOSV1R8 and ZOSV1R9 (same as PM5)

FILL(fill_byte)

specifies to the binder the byte value to be used to initialize storage areas in

the program object. The (fill_byte) must be a two hexadecimal digit in the range

of 0 — F.

HOBSET(NO | YES)

NO

specifies that the binder NOT set the high-order bit (HOB) in V-type adcons

according to the AMODE of the target entry point. NO is the default.

YES

specifies that the binder set the high-order bit (HOB) in V-type adcons

according to the AMODE of the target entry point.

FETCHOPT(PACK | NOPACK, PRIME | NOPRIME)

allows control over how the module is loaded. The PACK and PRIME

suboperands indicate whether the program object:

v is loaded on a double-word boundary (PACK) or on a page boundary

(NOPACK)

v is (PRIME) or is not (NOPRIME) completely read into virtual storage before

execution begins

Both suboperands are required for PDSEs; however, (PACK,NOPRIME) is a

program object. Both suboperands apply to a program object stored in a PDSE.

Only the first (PACK/NOPACK) applies to a program object stored in a Unix file.

Note that PACK for a PDSE implies that the program is first page-mapped but

then moved from a page boundary to a double-word boundary, forcing all data

to be read. Thus the combination of (PACK,NOPRIME) is not allowed.

PACK

If PACK is specified for a PDSE, PRIME must also be specified.

 A PACKed module requires a smaller amount of the user’s virtual storage,

but it might require more time to load. PACKed modules are aligned on

doubleword boundaries.

NOPACK

specifies that the module is loaded on a page boundary. This may improve

performance for a module in a PDSE when the NOPRIME option is also in

effect.

PRIME

specifies that the entire program will be loaded from a PDSE into virtual

storage before execution begins. This is likely to increase load time but

reduce the likelihood of page faults during execution.

NOPRIME

specifies, for a program object in a PDSE, that it is only to be page-mapped

before execution begins. The program code and data will be read in only

when it is needed. NOPRIME is not allowed with PACK for a PDSE.

RMODE(24 | ANY | SPLIT)

specifies the residence mode for the module to be bound. If all control sections

are not specified as RMODE(ANY), RMODE defaults to 24. If any section of the

load module has an RMODE of 24, RMODE defaults to RMODE(24). If the

RMODE operand is given without an operand, you are prompted for it. Valid

RMODE values are:

LINK Command

Chapter 1. TSO/E commands and subcommands 163

|

24 to indicate the module must reside below the 16 MB line

ANY

to indicate the module can reside anywhere below the 2GB bar in virtual

storage

SPLIT

to indicate that the program object is to be split into two segments

according to the RMODE of the CSECTs. SPLIT is supported only for PM2

or later format program objects.

LIB(data_set)

specifies one or more names of library data sets to be searched by the linkage

editor or binder to locate programs referred to by the module being processed;

that is, to resolve external references. When you specify more than one name,

the names must be separated by a valid delimiter. If you specify more than

name, the data sets are concatenated to the file name of the first data set in the

list. If an input data set contains INCLUDE, LIBRARY, or AUTOCALL control

statements which are intended to obtain data from the LIB data sets, the first

data set in the LIB list must have been pre-allocated with the ddname in the

control statements. For implicit resolution the first data set in the LIB list must

have been pre-allocated with ddname SYSLIB before the LINK command. If you

specify more than one name, the data sets are concatenated to the file name of

the first data set and lose their individual identity. For details on dynamic

concatenation, see z/OS MVS Programming: Authorized Assembler Services

Guide.

PLILIB | PLIBASE | PLICMIX | FORTLIB | COBLIB

PLILIB

specifies the partitioned data set named SYS1.PL1LIB is to be searched by

the LINK command to locate external symbols that are referred to by the

module being processed.

PLIBASE

specifies the partitioned data set named SYS1.PLIBASE is to be searched

to locate external symbols referred to by the module being processed.

PLICMIX

specifies the partitioned data set named SYS1.PLICMIX is to be searched

to locate external symbols referred to by the module being processed.

FORTLIB

specifies the partitioned data set named SYS1.FORTLIB is to be searched

by the LINK command to locate external symbols referred to by the module

being processed.

COBLIB

specifies the partitioned data set named SYS1.COBLIB is to be searched

by the LINK command to locate external symbols referred to by the module

being processed.

MAP | NOMAP

MAP

specifies the PRINT data set is to contain a map of the output module

consisting of the control sections, the entry names, and (for overlay

structures) the segment number.

NOMAP

specifies a map of the output module is not to be listed. NOMAP is the

default.

LINK Command

164 z/OS V1R9.0 TSO/E Command Reference

LET | LET(sev_code) | NOLET

specifies a severity code, which if exceeded, causes the module to be marked

non-executable. The severity code is the aggregate error level of all calls to the

binder. Valid values for severity code are 0, 4, 8, and 12. If LET is specified, it

defaults to LET(8); if LET is not specified, it defaults to LET(4). NOLET is

equivalent to LET(0).

XCAL | NOXCAL

XCAL

specifies the output module is permitted to be marked as executable even

though an exclusive call has been made between segments of an overlay

structure. Because the segment issuing an exclusive call is overlaid, a

return from the requested segment can be made only by another exclusive

call or a branch.

NOXCAL

specifies both valid and not valid exclusive calls are marked as errors.

NOXCAL is the default.

XREF | NOXREF

XREF

specifies a cross-reference table is to be placed on the PRINT data set.

The table includes the module map and a list of all address constants

referring to other control sections.

NOXREF

specifies a cross-reference listing is not to be produced. NOXREF is the

default.

REUS | NOREUS

REUS

specifies the output is to be marked serially reusable if the input load

modules and program objects was re-enterable or serially reusable. The

RENT and REUS operand are mutually exclusive. If the OVLY or TEST

operands are specified, the REUS operand must not be specified.

NOREUS

specifies the load module is not be marked reusable. NOREUS is the

default.

LINECT(60 | line_count)

specifies the number of lines (including heading and blank lines) contained on

each page of the binder listing. The valid range is 24-200 and 0. Zero indicates

a single, indefinitely long page, and values of 1-23 are forced to 24; however,

there are always page ejects at the beginning of the binder listing and the start

of the map, cross reference (XREF), and summary reports. LINECT defaults to

60 lines.

LIST | NOLIST | LIST(OFF | STMT | SUMMARY | NOIMPORT| ALL)

allows you to control the type of information included in the SYSPRINT data.

LIST specifies a list of all linkage editor control statements is to be produced.

LIST is valid for both the linkage editor and the binder. The default for LIST is

SUMMARY. This is ignored if NOPRINT is specified or NOPRINT is the default.

LIST, with no value, is equivalent to LIST (SUMMARY), and NOLIST is

equivalent to LIST(OFF).

SUMMARY

indicates that messages, control statements and a save summary report

(including processing options and module attributes) are to be printed.

LINK Command

Chapter 1. TSO/E commands and subcommands 165

OFF

specifies a listing of the linkage editor control statements is not to be

produced. Only messages will be printed. In a batch environment,

LIST(OFF) is equivalent to NOLIST.

STMT

indicates that messages and control statements are to be printed. In a

batch environment, LIST(STMT) is equivalent to LIST.

NOIMPORT

produces the same output as SUMMARY except without IMPORT control

statements.

ALL

indicates that all input activity (whether initiated by the binder service calls

or control statements) and the load or save summary are to be logged.

MSGLEVEL(0 | 4 | 8 | 12)

specifies the severity level below which messages are not displayed. Valid

severity levels are 0, 4, 8, and 12. If a message has a severity lower than the

level indicated here, it is not printed, written to either print or terminal files, or

passed to the messages exit.

MAXBLK(integer)

specifies the maximum text block size (in bytes) for load modules that are

saved in an output library by the binder. The value range is 256-32760. If you

specify a value outside this range, you receive a warning message, and the

value is set to the device-dependent default value.

 MAXBLK defaults to ½ of SIZE(,integer_2) but not less than 4096 nor more than

the minimum of 32760 or the track size. This value is also compatible with that

used by the linkage editor.

 If neither MAXBLK nor SIZE are specified, the maximum block size defaults to

the blocksize of the data set. However, if DC is also specified, the maximum

block size is always set to 1024.

WKSPACE(value_1[,value_2])

specifies the maximum amount of user’s virtual storage available to the binder

below and above 16 MB. You do not need to include this operand unless you

have special virtual storage considerations such as the virtual storage between

two concurrent applications needs to balance. If coded, a minimum of

WKSPACE(96,1024) is suggested for all binder operations.

value_1

indicates the maximum amount (in KB) of user’s virtual storage available to

the binder below 16 MB in virtual storage. This value is optional; however,

be certain to code a comma (,) if only value_2 is specified.

value_2

indicates the maximum amount (in KB) of user’s virtual storage available to

the binder above 16 MB in virtual storage. This value is optional; however,

be certain to code a comma (,) if value_1 is not also specified.

SSI(ssi_word)

specifies that the system status index (SSI) is used as a binder option. If

specified, the SETSSI control statement overrides this specification. Refer to the

SETSSI control statement of AMASPZAP in z/OS MVS Diagnosis: Tools and

Service Aids , for a description of the system status index (SSI). It has to be

exactly 8 hex digits.

STORENX | NOSTORENX | STORENX(YES | NO[REPLACE] | NEVER)

LINK Command

166 z/OS V1R9.0 TSO/E Command Reference

STORENX

replaces the existing module of the same name in a program library with a

new module, regardless of the executable status of either module. If you

specify the NAME statement, you must provide the replace option (R).

STORENX is supported only by the binder.

NOSTORENX | STORENX(NO)

is the default value, and can be specified as STORENX(NO[REPLACE]).

STORENX(NEVER)

prevents the save of a non-executable module even when no module with

the same name previously existed in the target library.

REFR | NOREFR

REFR

specifies the load module is to be marked refreshable if the input load

modules and program objects was refreshable and the OVLY operand was

not specified.

NOREFR

specifies the output is not to be marked refreshable. NOREFR is the

default.

SCTR | NOSCTR

SCTR

specifies the load module created by the linkage editor or binder can be

either scatter loaded or block loaded. If you specify SCTR, do not specify

OVLY. This is meaningful only for the system nucleus.

NOSCTR

specifies scatter loading is not permitted. NOSCTR is the default.

OVLY | NOOVLY

OVLY

specifies the output module is an overlay structure and is therefore suitable

for block loading only. If you specify OVLY, do not specify SCTR. OVLY is

supported for load modules and PM1–level program objects.

NOOVLY

specifies the load module is not an overlay structure. NOOVLY is the

default.

RENT | NORENT

RENT

specifies the output module is marked re-enterable provided the input load

modules and program objects was re-enterable and the OVLY operand was

not specified.

NORENT

specifies the load module is not marked re-enterable. NORENT is the

default.

SIZE(integer_1,integer_2)

specifies the amount of virtual storage to be used by the linkage editor. The first

integer (integer_1) indicates the maximum allowable number of bytes. If

integer_1 is omitted, the binder does not limit its use of storage that is below

the 16 MB line. integer_2 indicates the number of bytes to be used by the

linkage editor buffer as the load module buffer, which is the virtual storage area

used to contain input and output data. If this operand is omitted, SIZE defaults

LINK Command

Chapter 1. TSO/E commands and subcommands 167

to the size specified by your system programmer. For more information about

the use of integer_2 by the binder see the description of MAXBLK on page 166.

NE | NONE

NE

specifies the output load module cannot be processed again by the linkage

editor, loader or binder. The linkage editor does not create an external

symbol dictionary. If you specify either MAP or XREF, then the NE operand

is not valid for the linkage editor.

NONE

specifies the output load module can be processed again by the linkage

editor, loader or binder and that an external symbol dictionary is present.

NONE is the default.

OL | NOOL

OL

specifies the output load module can be brought into real storage only by

the LOAD macro instruction.

NOOL

specifies the load module is not restricted to the use of the LOAD macro

instruction for loading into real storage. NOOL is the default.

DC | NODC

DC

specifies that no block in the load module is to be longer than 1024 bytes

and no text block is to contain more than one control section.

NODC

specifies the DC limits do not apply. NODC is the default. This applies only

to load modules stored in a PDS, not to program objects stored in a PDSE

(DSNTYPE=LIBRARY) or in a Unix file. For more information see z/OS

MVS Program Management: User’s Guide and Reference

TEST | NOTEST

TEST

specifies the symbol tables created by the assembler and contained in the

input modules are to be placed into the output module. This is useful only if

the assembler also used the TEST option.

NOTEST

specifies no symbol table is to be retained in the output load module.

NOTEST is the default.

TERM | NOTERM

TERM

specifies you want error messages directed to your terminal and to the

PRINT data set. TERM is the default.

Note: TERM output is a subset of PRINT output; if you specify PRINT(*)

then TERM is ignored.

NOTERM

specifies you want error messages directed only to the PRINT data set and

not to your terminal.

DCBS(block_size)

specifies the block size of the records contained in the output data set.

LINK Command

168 z/OS V1R9.0 TSO/E Command Reference

Note: DCBS is applicable only for load modules, not for program objects.

AC(authorization_code)

specifies an authorization code (0-255) to maintain data security. Any non-zero

value causes the program to have APF authorization if the data set is APF

authorized (APF = authorized program facility).

EP(entryname)

specifies the entry point of the output program. If this option is not specified and

an entry control statement does not exist, the default used depends on the

order in which CSECTs are bound and if a compiler specified an entry location

in the END record of any object file. The first specified entry point will be used.

If no entry point is specified, the entry will be the beginning of the module. The

maximum value length of EP has been extended from 8 characters to 64

characters.

COMPRESS(YES | NO |AUTO)

Attempt to compress binder data in program object. This is only supported for

ZOSV1R7 or higher format.

YES

forces format to ZOSV1R7 to allow compression.

NO

never attempts compression.

AUTO

attempts to compress only if ZOSV1R7 or higher format is required for

other reasons.

LISTPRIV(YES | NO)

Include a list of unnamed (private code) sections.

Note: This is a diagnostic tool to detect unnamed sections, which can cause

problems in rebinding. If any unnamed sections are found when running

with LISTPRIV(YES), a level 8 error message will be produced.

INFO | NOINFO

Controls whether the listing, if produced, should also include modified binder

CSECT names with compile dates and most recently applied PTF for those

modules that have been updated since the release was shipped. This is a

diagnostic aid to assist IBM personnel.

MODMAP(LOAD | NOLOAD | NO)

Controls whether, and where, a map of the module will be stored within the

module.

LOAD

A map will be produced as CSECT IEWBMMP within the load segment

which contains the module entry point.

NOLOAD

A map will be produced as section IEWBMMP in class B_MODMAP, and

that class will be marked as not loadable. Binder APIs can be used to

access the data.

NO

No module map will be produced. This is the default, except that if the

program contains a strong reference to IEWBMMP the default will be

MODMAP(LOAD).

LINK Command

Chapter 1. TSO/E commands and subcommands 169

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

LINK command return codes

 Table 19. LINK command return codes

0 Processing successful.

8 Processing incomplete; system prompts you for additional information.

12 Processing unsuccessful.

LINK command examples

Example 1

Operation: Combine three object modules into a single load module.

Known:

v The names of the object modules in the sequence that the modules must be in:

TPB05.GSALESA.OBJ TPB05.GSALESB.OBJ TPB05.NSALES.OBJ

v You want all of the linkage editor listings to be produced and directed to your

terminal.

v The name for the output load module: TPB05.SALESRPT.LOAD(TEMPNAME)
link (gsalesa,gsalesb,nsales) load(salesrpt) print(*) -

xref list

Example 2

Operation: Create a load module from an object module, an existing load module,

and a standard processor library.

Known:

v The name of the object module: VACID.M33THRUS.OBJ

v The name of the existing load module: VACID.M33PAYLD.LOAD(MOD1)

v The name of the standard processor library used for resolving external

references in the object module: SYS1.PLILIB

v The entry name of the load module is MOD2.

v The alias name of the load module is MOD3.

v The name of the output load module: VACID.M33PERFO.LOAD(MOD2)
link(m33thrus,*) load(m33perfo(mod2)) print(*) -

 plilib map list

Choosing ld2 as a file name to be associated with the existing load module, the

display at your terminal will be:

allocate dataset(m33payld.load) file(ld2)

link (m33thrus,*) load(m33perfo(mod2)) print(*) -

 plilib map list

IKJ76080A ENTER CONTROL STATEMENTS

 include ld2(mod1)

 entry mod2

 alias mod3

 (null line)

IKJ76111I END OF CONTROL STATEMENTS

Example 3

Operation: Re-specify the mode of an object module from 24-bit addressing and

residence mode to 31-bit addressing and residence mode ANY.

Known:

v The name of the object module: ACCOUNT.MON.OBJ which has an addressing

mode of 24-bit

LINK Command

170 z/OS V1R9.0 TSO/E Command Reference

v The name of the output load module: ACCOUNT.MINE.LOAD(NEWMOD)
link mon load(mine(newmod))amode(31) rmode(any)

LISTALC command

Use the LISTALC command to obtain a list of the currently allocated data sets. The

LISTALC command without operands displays a list of all (partitioned and not

partitioned) data set names the user has dynamically allocated and those allocated

by previous TSO/E commands (issued while in the current TSO/E session). This list

includes terminal data sets, indicated by the word TERMFILE, and also

attr_list_names created by the ATTRIB command, indicated by the word NULLFILE.

If the list should include also temporary data sets, which are created and deleted in

the same job, use the SYSNAMES keyword operand to display these data sets.

See z/OS MVS JCL User’s Guide for a detailed description of permanent and

temporary data sets.

If an asterisk precedes a data set name, it indicates that the data set is allocated,

but marked not-in-use.

LISTALC command syntax

�� LISTALC

LISTA

STATUS

HISTORY

MEMBERS

SYSNAMES
 ��

LISTALC command operands

STATUS

specifies that you want information about the status of each data set. This

operand provides you with:

v The data definition name (ddname) for the data set allocated and the

attr_list_names created by the ATTRIB command.

v The normal termination disposition of the data set, and when listed,

separated by a comma, the abnormal termination disposition. The abnormal

termination disposition takes effect if an abnormal termination occurs.

The dispositions are CATLG, DELETE, KEEP and UNCATLG. CATLG means

the data set is retained and its name is in the system catalog. DELETE

means references to the data set are to be removed from the system and the

space occupied by the data set is to be released. KEEP means the data set

is to be retained. UNCATLG means the data set name is removed from the

catalog, but the data set is retained. For each data set managed by SMS,

KEEP means CATLG and UNCATLG means DELETE.

HISTORY

specifies that you want to obtain information about the history of each data set.

This operand provides you with:

v The creation date

v The expiration date

v An indication whether the data set has password protection (non-VSAM only)

or if the data set is RACF protected.

Note: LISTALC HISTORY output may indicate NONE for security on a data

set and LISTDS HISTORY output may indicate RACF security for the

same data set. The LISTDS module is an authorized program that

LINK Command

Chapter 1. TSO/E commands and subcommands 171

calls two RACF macros RACSTAT and RACHECK. LISTALC is not an

authorized program and does not use the RACF macros.

v The data set organization (DSORG). The listing contains:

– PS for sequential

– PO for partitioned

– IS for indexed sequential

– DA for direct access

– VSAM for VSAM data entries

– DIR for any z/OS UNIX directory

– CSPEC for any z/OS UNIX character special file

– FILE for any z/OS UNIX regular file

– FIFO for any z/OS UNIX FIFO special file

– SYMLK for any z/OS UNIX symbolic link

– ** for unspecified

– ?? for any other specification

Note: Use the LISTCAT command for further information about VSAM data

entries.

MEMBERS

specifies that you want to obtain the library member names of each partitioned

data set having your user ID as the leftmost qualifier of the data set name.

Aliases are included.

 If another application is exclusively using the partitioned data set, the system

displays a message and an abend code.

SYSNAMES

specifies that you want to obtain a list of all allocated data sets, including

temporary data sets. For temporary data sets the system generates qualified

names that start with SYS, followed by other qualifiers. See z/OS MVS JCL

User’s Guide about temporary data sets and the naming conventions applied to

them.

LISTALC command return codes

 Table 20. LISTALC command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

LISTALC command examples

Example 1

Operation: Obtain a list of the names of the data sets allocated to you (not

including the names of temporary data sets).

listalc

Example 2

Operation: Obtain a list of the names of the data sets allocated to you (not

including the names of temporary data sets). At the same time obtain the creation

date, the expiration date, password protection, and the data set organization for

each data set allocated to you.

lista history

LISTALC Command

172 z/OS V1R9.0 TSO/E Command Reference

Example 3

Operation: Obtain all available information about the data sets allocated to you

(including the names of temporary data sets).

lista members history status sysnames

The output at your terminal might be similar to the following listing:

listalc mem status sysnames history

--DSORG--CREATED-----EXPIRES-----SECURITY---DDNAME---DISP

MICHELLE.ASM

 PS 06/06/1991 00/00/0000 WRITE DAUGHTER KEEP

NEAL.EXAMPLE

 PO 07/03/1998 00/00/0000 PROTECTEDMYSON KEEP,KEEP

--MEMBERS--

 MEMBER1

 MEMBER2

SYS70140.T174803.RV000.TSOSPEDT.R0000001

 ** 00/00/0000 00/00/0000 NONE SYSUT1 DELETE

ALLOCATION MUST BE FREED BEFORE RESOURCES CAN BE

RE-USED

 EDTDUMY3

 SYSIN

 SYSPRINT

READY

Example 4

Operation: List the names of all your active attribute lists allocated with the ATTRIB

command.

lista status

The output at your terminal might be similar to the following listing:

lista status

--DDNAME---DISP--

SYS1.LPALIB2

 STEPLIB KEEP

SYS1.UADS

 SYSUADS KEEP

SYS1.BRODCAST

 SYSLBC KEEP

TERMFILE SYSIN

TERMFILE SYSPRINT

*SYS1.HELP

 SYS00005 KEEP,KEEP

D95BAB1.SEPT30.ASM

 SYS00006 KEEP,KEEP

NULLFILE A

NULLFILE B

READY

Example 5

Operation: Excerpt from a job protocol showing the output from the LISTALC

command with different operands, especially how LISTALC treats the temporary

data sets.

...
 //JDC# JOB job card data ...

 //*

 // EXEC PGM=IKJEFT01,DYNAMNBR=100,REGION=8M

1 //NORBERT1 DD DSN=JDC.NORBERT,DISP=(OLD,KEEP,DELETE)

2 //NORBERT2 DD DISP=(NEW,DELETE),SPACE=(TRK,(1,1))

3 //NORBERT3 DD DSN=&&DSNAME,DISP=(NEW,DELETE),

 // SPACE=(TRK,(1,1))

LISTALC Command

Chapter 1. TSO/E commands and subcommands 173

...
 IGD104I JDC.NORBERT RETAINED, DDNAME=NORBERT1

 IGD105I SYS95069.T122631.RA000.JDC#.R0201039 DELETED, DDNAME=NORBERT2

 IGD105I SYS95069.T122631.RA000.JDC#.DSNAME.H02 DELETED, DDNAME=NORBERT3 ...
 READY

 LISTA

 JDC.NORBERT ...
 READY

 LISTA STATUS

 --DDNAME---DISP--

 JDC.NORBERT

 NORBERT1 KEEP,DELETE ...
 READY

 LISTA SYSNAMES

 JDC.NORBERT

 SYS95069.T122631.RA000.JDC#.R0201039

 SYS95069.T122631.RA000.JDC#.DSNAME.H02 ...
 READY

 END

Note the three JCL DD statements identifying:

1. A permanent data set named JDC.NORBERT

2. A temporary data set without DSN parameter at all (the system will specify a

data set name)

3. A temporary data set with a name of &DSNAME.

At the bottom you see that only LISTALC with the SYSNAMES operand lists the

permanent and temporary data sets.

LISTBC command

Use the LISTBC command to display notices and mail. Notices are messages from

the operator intended for all users to view. Mail is messages from another user or

program to a particular user. By default, notices and mail are stored in the

broadcast data set, SYS1.BRODCAST. However, your installation may use user

logs. If so, mail is stored in and retrieved from individual user logs. Notices are still

stored in and retrieved from the broadcast data set.

If your installation uses security labels and security checking and for SEND and

LISTBC processing, MAIL messages are handled differently. When you enter the

LISTBC command, LISTBC checks the security label on each MAIL message in

your user log and compares it to your current security label (the security label you

are logged on with). If your current security label is equal to or greater than the

message’s security label, the message is displayed. If your current security label is

less than the message’s security label, one of the following occurs:

v If you are authorized to log on with a security label that is equal to or greater

than the message’s security label, you receive a message stating that there is a

message in your user log that you cannot view at your current security label. Log

off and log on at a greater security label and issue LISTBC again.

v If you are not authorized to log on with a security label that is equal to or greater

than the message’s security label, the message is deleted and you do not

receive notification that it was sent.

LISTALC Command

174 z/OS V1R9.0 TSO/E Command Reference

Note: For a list of the security labels you are allowed to log on with, use the RACF

command SEARCH CLASS(SECLABEL).

LISTBC command syntax

��

LISTBC

LISTB

 MAIL

NOMAIL

 NOTICES

NONOTICES

��

LISTBC command operands

MAIL | NOMAIL

MAIL

specifies that you want to receive the messages from the broadcast data

set or the user log data set that are intended specifically for you. MAIL is

the default.

NOMAIL

specifies that you do not want to receive messages intended specifically for

you.

NOTICES | NONOTICES

NOTICES

specifies that you want to receive the messages from the broadcast data

set that are intended for all users. NOTICES is the default.

NONOTICES

specifies that you do not want to receive the messages that are intended

for all users.

LISTBC command return codes

 Table 21. LISTBC command return codes

0 Processing successful.

12 Processing unsuccessful.

The following return codes are valid only if you have an installation-defined user log

data set:

 Table 22. LISTBC command return codes (installation-defined user log data set)

0 Messages and notices are displayed.

4 Only messages are displayed.

6 One or more messages were deleted from the user log. The receiver is

not authorized at a security label at which the message can be viewed.

8 Only notices are displayed.

10 User log contains messages that cannot be viewed at user’s current

security label.

12 No notices or messages are displayed.

16 Messages and notices are not displayed, user denied access.

20 Messages and notices are not displayed, command not authorized.

92 Messages and notices are not displayed, system error.

LISTBC Command

Chapter 1. TSO/E commands and subcommands 175

LISTBC command examples

Example 1

Operation: Specify that you want to receive all messages.

listbc

Example 2

Operation: Specify that you want to receive only the messages intended for all

terminal users.

listbc nomail

LISTCAT command

Use the LISTCAT command to list entries from a catalog. The entries listed can be

selected by name or entry type, and the fields to be listed for each entry can

additionally be selected.

In this book, “with SMS” indicates that SMS is installed and is active.

With Storage Management Subsystem, LISTCAT also lists the following Storage

Management Subsystem class names:

v Data class contains the data set attributes related to the allocation of the data

set, such as LRECL, RECFM, SPACE, and TRACKS.

v Storage class contains performance and availability attributes related to the

storage occupied by the data set.

v Management class contains the data set attributes related to the migration and

backup of the data set, such as performed by the Data Facility Hierarchical

Storage Manager (DFSMShsm). A management class can be assigned only to a

data set that also has a storage class assigned.

For information about these classes, see “SMS classes” on page 18.

For MVS, the original TSO LISTCAT command has been replaced by an Access

Method Services command of the same name. The operand descriptions that follow

provide the information required to use these services for normal TSO/E operations.

The TSO/E user who wants to manipulate VSAM data sets or use the other Access

Method Services from the terminal should see z/OS DFSMS Access Method

Services for Catalogs. For error message information, see the MVS/ESA System

Messages library.

The LISTCAT command supports unique operand abbreviations in addition to the

typical abbreviations produced by truncation. The syntax and operand explanations

show these unique cases.

When LISTCAT is invoked and no operands are specified, the user ID or the prefix

specified by the PROFILE command becomes the highest level of entry name

qualification. Only those entries associated with the user ID are listed.

LISTCAT command syntax

�� LISTCAT

LISTC

CATALOG(catalog_name

)

/password

 �

LISTBC Command

176 z/OS V1R9.0 TSO/E Command Reference

�
OUTFILE

(ddname)

OFILE

�

ENTRIES(

entry_name

)

/password

LEVEL

(level)

LVL

 �

�
CLUSTER

DATA

INDEX

IX

SPACE

SPC

NONVSAM

NVSAM

USERCATALOG

UCAT

 �

�
GENERATIONDATAGROUP

GDG

PAGESPACE

PGSPC

ALIAS

CREATION(days)
 �

�

EXPIRATION(days)

 NAME

ALL

VOLUME

ALLOCATION

HISTORY

DATACLAS

MGMTCLAS

�

�
STORCLAS

 ��

LISTCAT command operands

CATALOG(catalog_name[/password])

specifies the name of the catalog that contains the entries to be listed. When

CATALOG is coded, only entries from that catalog are listed.

catalog_name

is the name of the catalog.

password

specifies the read level or higher-level password of the catalog that contains

entries to be listed. When the entries to be listed contain information about

password-protected data sets, a password must be supplied either through

this operand or through the ENTRIES operand. If passwords are to be

listed, you must specify the master password.

OUTFILE(ddname) | OFILE(ddname)

specifies a data set other than the terminal to be used as an output data set.

The ddname can correspond to the name specified for the FILE operand of the

ALLOCATE command. The data can be listed when the file is freed. The

ddname identifies a DD statement that, in turn, identifies the alternate output

data set. If OUTFILE is not specified, the entries are displayed at the terminal.

 The normal output data set for listing is SYSPRINT. The default properties of

this data set are:

v Record format: VBA

v Logical record length: 125, that is, 121+4

v Block size: 629, that is, 5 x (121+4)+4

LISTCAT Command

Chapter 1. TSO/E commands and subcommands 177

Print lines are 121 bytes in length. The first byte is the ANSI control character.

The minimum specifiable LRECL is 121 (U-format records only). If a smaller

size is specified, it is overridden to 121.

 It is possible to alter the preceding defaults through specification of the desired

values in the DCB operand of the SYSPRINT statement. The record format,

however, cannot be specified as F or FB. If you do specify either one, it is

changed to VBA.

 In several commands, you have the option of specifying an alternate output

data set for listing. If you do specify an alternate, you must specify DCB

operands in the referenced DD statement. When specifying an alternate output

data set, you should not specify F or FB record formats.

ENTRIES(entry_name/password)

specifies the names of the entries to be listed. If neither ENTRIES nor LEVEL is

coded, only the entries associated with the user ID are listed. For more

information about the ENTRIES operand, see z/OS DFSMS Access Method

Services for Catalogs.

entry_name

specifies the names or generic names of entries to be listed. Entries that

contain information about catalogs can be listed only by specifying the

name of the master or user catalog as the entry_name. The name of a data

space can be specified only when SPACE is the only type specified. If a

volume serial number is specified, SPACE must be specified.

Note: You can change a qualified name into a generic name by substituting

an asterisk (*) for only one qualifier. For example, A.* specifies all

two-qualifier names that have A as first qualifier; A.*.C specifies all

three-qualifier names that have A for first qualifier and C for third

qualifier. However, LISTCAT does not accept *.B as a valid generic

name. The * is not a valid user ID for the first qualifier.

password

specifies a password when the entry to be listed is password protected and

a password was not specified through the CATALOG operand. The

password must be the read or higher-level password. If protection attributes

are to be listed, you must supply the master password. If no password is

supplied, the operator is prompted for each entry’s password. Passwords

cannot be specified for non-VSAM data sets, aliases, generation data

groups, or data spaces.

LEVEL(level) | LVL(level)

specifies the level of entry_names to be listed. If neither LEVEL nor ENTRIES

is coded, only the entries associated with the user ID are listed.

CLUSTER

specifies cluster entries are to be listed. When the only entry type specified is

CLUSTER, entries for data and index components associated with the clusters

are not listed.

DATA

specifies entries for data components, excluding the data component of the

catalog, are to be listed. If a cluster’s name is specified on the ENTRIES

operand and DATA is coded, only the data component entry is listed.

INDEX | IX

specifies entries for index components, excluding the index component of the

LISTCAT Command

178 z/OS V1R9.0 TSO/E Command Reference

catalog, are to be listed. When a cluster’s name is specified on the ENTRIES

operand and INDEX is coded, only the index component entry is listed.

SPACE | SPC

specifies entries for volumes containing data spaces defined in this VSAM

catalog are to be listed. Candidate volumes are included. If entries are identified

by entry_name or level, SPACE can be coded only when no other entry_type

restriction is coded.

NONVSAM | NVSAM

specifies entries for non-VSAM data sets are to be listed. When a generation

data group’s name and NONVSAM are specified, the generation data sets

associated with the generation data group are listed.

USERCATALOG | UCAT

specifies entries for user catalogs are to be listed. USERCATALOG is

applicable only when the catalog that contains the entries to be listed is the

master catalog.

Note: When listing user catalogs, PROFILE NOPREFIX must be issued to

ensure that all user catalogs will be found.

GENERATIONDATAGROUP | GDG

specifies entries for generation data groups are to be listed.

PAGESPACE | PGSPC

specifies entries for page spaces are to be listed.

ALIAS

specifies entries for alias entries are to be listed.

CREATION(days)

specifies entries are to be listed only if they were created no later than that

number of days ago.

EXPIRATION(days)

specifies entries are to be listed only if they expire no later than the number of

days from now.

ALL | NAME | HISTORY | VOLUME | ALLOCATION

specifies the fields to be included for each entry listed. If no value is coded,

NAME is the default.

 With Storage Management Subsystem, the operands also list Storage

Management Subsystem class names and the last backup data set.

ALL

specifies all fields are to be listed.

NAME

specifies names of the entries are to be listed. The default is NAME.

HISTORY

specifies the name, owner identification, creation date, and expiration date

of the entries are to be listed.

VOLUME

specifies the name, owner identification, creation date, expiration date, entry

type, volume serial numbers and device types allocated to the entries are to

be listed. Volume information is not listed for cluster entries (although it is

for the cluster’s data and index entries), aliases, or generation data groups.

LISTCAT Command

Chapter 1. TSO/E commands and subcommands 179

ALLOCATION

specifies the information provided by specifying VOLUME and detailed

information about the allocation are to be listed. The information about

allocation is listed only for data and index component entries.

DATACLAS

with Storage Management Subsystem, indicates that the data class of the

catalog is to be listed.

MGMTCLAS

with Storage Management Subsystem, indicates that the management class of

the catalog is to be listed.

STORCLAS

with Storage Management Subsystem, indicates that the storage class of the

catalog is to be listed.

LISTCAT command return codes

 Table 23. LISTCAT command return codes

0 Processing successful. Informational messages might have been issued.

4 Processing successful, but a warning message has been issued.

8 Processing was completed, but specific details were bypassed.

12 Processing unsuccessful.

16 Severe error or problem encountered.

LISTDS command

Use the LISTDS command to have the attributes of specific data sets displayed at

your terminal. The LISTDS command works differently, depending upon whether the

data set is VSAM or non-VSAM. If you are unsure as to whether the data set is

VSAM or not, enter the LISTDS command with no operands.

A VSAM data set causes the LISTDS command to display only the data set

organization (DSORG), which is VSAM. Use the LISTCAT command to obtain more

information about a VSAM data set.

For non-VSAM data sets, you can obtain:

v The volume serial number of the DASD volume on which the data set resides.

MVS does not support drums.

v The logical record length (LRECL)

v The block size (BLKSIZE)

v The record format (RECFM)

v The data set organization (DSORG). The data set organization is indicated as

follows:

– PS for sequential

– PO for partitioned

– IS for indexed sequential

– DA for direct access

– VSAM for VSAM data entries

– ** for unspecified

– ?? for any other specification

LISTCAT Command

180 z/OS V1R9.0 TSO/E Command Reference

v Directory information for members of partitioned data sets, if you specify the data

set name in the form data_set_name(member_name).

v Creation date, expiration date, and, security attributes.

v File name and disposition

v Data set control blocks (DSCB).

Note: Data sets that are dynamically allocated by the LISTDS command are

automatically freed when the command terminates, unless the data set

previously was allocated with the permanent attribute. You must explicitly

free dynamically allocated data sets.

LISTDS command syntax

��

�

LISTDS

(

data_set

)

STATUS

HISTORY

MEMBERS

LABEL

�

�
CATALOG(catalog_name)

LEVEL
 ��

LISTDS command operands

(data_set)

specifies one or more data set names. This operand identifies the data sets that

you want to know more about. Each data set specified must be currently

allocated or available from the catalog, and must reside on a currently active

volume. The names in the data set list can contain a single asterisk in place of

any level except the first. When this is done, all cataloged data sets whose

names begin with the specified qualifiers are listed. For example, A.*.C

specifies all three-qualifier names that have A for the first qualifier and C for the

third qualifier.

Note: Do not use alias data set names with this command.

STATUS

specifies that you want the following additional information:

v The ddname currently associated with the data set.

v The normal termination disposition of the data set, and when listed,

separated by a comma, the abnormal termination disposition. The abnormal

termination disposition takes effect if an abnormal termination occurs.

The keywords denoting the dispositions are CATLG, DELETE, KEEP, and

UNCATLG. CATLG means the data set is cataloged. DELETE means the

data set is to be removed. KEEP means the data set is to be retained.

UNCATLG means the name is removed from the catalog, but the data set is

retained. With a data set managed by SMS, KEEP means CATLG and

UNCATLG means DELETE.

HISTORY

specifies that you want to obtain the creation and expiration dates for the

specified data sets and find out whether the non-VSAM data sets are

password-protected or if the data set is RACF protected.

LISTDS Command

Chapter 1. TSO/E commands and subcommands 181

Note: LISTALC HISTORY output may indicate NONE for security on a data set

and LISTDS HISTORY output may indicate RACF security for the same

data set. The LISTDS module is an authorized program that calls two

RACF macros RACSTAT and RACHECK. LISTALC is not an authorized

program and does not use the RACF macros.

MEMBERS

specifies that you want a list of all the members of a partitioned data set,

including aliases.

LABEL

specifies that you want to have the entire data set control block (DSCB) listed

at your terminal. This operand is applicable only for non-VSAM data sets on

direct access devices. The list is in hexadecimal notation.

CATALOG(catalog_name)

specifies the user catalog that contains the names in the data set list.

CATALOG is required only if the names cannot be found by normal catalog

search.

LEVEL

specifies names in the data set list are to be high-level qualifiers. All cataloged

data sets whose names begin with the specified qualifiers are listed. If LEVEL is

specified, the names cannot contain asterisks.

 Specify only one data set list with the LEVEL option.

LISTDS command return codes

 Table 24. LISTDS command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

LISTDS command examples

Example 1

Operation: List the basic attributes of a particular data set.

Known:

v The data set name: ZALD58.CIR.OBJ
listds cir

The display at your terminal might be similar to the following:

listds cir

ZALD58.CIR.OBJ

--RECFM-LRECL-BLKSIZE-DSORG

 FB 80 80 PS

--VOLUMES--

 D95LIB

READY

LOADGO command

Use the LOADGO command to load a compiled or assembled program into virtual

storage and begin execution.

LISTDS Command

182 z/OS V1R9.0 TSO/E Command Reference

The LOADGO command loads object modules produced by a compiler or

assembler, and load modules or program objects produced by the linkage editor or

binder. If you want to load and execute a single load module, the CALL command is

more efficient. The LOADGO command also searches a call library (SYSLIB) or a

resident link pack area, or both, to resolve external references.

The LOADGO command invokes the binder or the batch loader to accomplish this

function, and combines basic editing and loading services of the binder or linkage

editor and program fetch in one job step. Therefore, the load function is equivalent

to the link-edit and go function.

The LOADGO command does not produce load modules or program objects for

program libraries. If NOBINDER is specified, LOADGO does not process linkage

editor control statements such as INCLUDE, NAME, OVERLAY, and so on.

LOADGO command syntax

��

�

LOADGO

(

data_set

)

LOAD

'parameters'

�

�
PRINT(

*

)

data_set_name

NOPRINT

24

AMODE(

)

31

64

ANY

MIN

24

RMODE(

)

ANY

SPLIT

 �

�

�

LIB(

data_set

)

 BINDER

NOBINDER

UPPER

CASE(

)

MIXED

�

�
PM3

COMPAT(

)

PM4

PM2

PM1

MIN

LKED

CURRENT

CURR

release

FILL(fill_byte)

NO

HOBSET(

)

YES

 �

LOADGO Command

Chapter 1. TSO/E commands and subcommands 183

�

60

LINECT(

)

line_count

LIST

SUMMARY

LIST(

OFF

)

STMT

NOIMPORT

ALL

NOLIST

�

PLILIB

PLIBASE

PLICMIX

FORTLIB

COBLIB

�

�
 TERM

NOTERM

 RES

NORES

 NOMAP

MAP

 CALL

NONCALL

NOCALL

NCAL

 NOLET

LET

LET(

)

0

4

8

12

�

�
0

MSGLEVEL(

)

4

8

12

WKSPACE(

)

value_1

,value_2

 �

�
SIZE(integer)

EP(entry_name)

NAME(program_name)

XREF

NOXREF

 �

�
LISTPRIV(

YES

)

NO

 ��

LOADGO command operands

(data_set)

specifies the names of one or more object modules, load modules and /or

program objects to be loaded and executed. The names can be data set

names, names of members of partitioned data sets, or both (see the data set

naming conventions). When you specify more than one name, the names must

be enclosed within parentheses and separated from each other by a standard

delimiter (blank or comma).

‘parameters’

specifies any parameters that you want to pass to the program to be executed.

PRINT(data_set_name | *) | NOPRINT

PRINT(data_set_name | *)

specifies the name of the data set that is to contain the listings produced by

the LOADGO command. If you omit the data set name, the generated data

LOADGO Command

184 z/OS V1R9.0 TSO/E Command Reference

set is named according to the data set naming conventions. You can

substitute an asterisk (*) for the data set name, if you want to have the

listings displayed at your terminal. If you specify the MAP operand, then

PRINT is the default.

NOPRINT

specifies no listings are to be produced. This operand suppresses the MAP

operand. If both PRINT and NOPRINT are omitted and you do not use the

MAP operand, then NOPRINT is the default.

AMODE(24 | 31 | 64 | ANY | MIN)

specifies the addressing mode for the module to be loaded. If the AMODE

operand is not specified, AMODE defaults to the AMODE of the main entry

point. Valid AMODE values are:

24 indicates that the module is invoked in 24-bit addressing mode.

31 indicates that the module is invoked in 31-bit addressing mode.

64 indicates that the module is invoked in 64-bit addressing mode.

ANY

indicates that the module is invoked in either 24-bit or 31-bit addressing

mode.

MIN

causes the binder to set the AMODE to the most restrictive AMODE of all

control sections in the module. In this respect, 24 is more restrictive than

31, which is more restrictive than ANY.

 The MIN keyword is used only to control binder processing. It assists the

binder in determining the resultant AMODE of the module. However, MIN is

never used as an AMODE itself and will not appear in the directory entry of

the resultant load module or program object.

 For more information see z/OS MVS Program Management: User’s Guide

and Reference.

RMODE(24 | ANY | SPLIT)

specifies the residence mode for the module to be loaded. If all control sections

are not specified as RMODE(ANY), RMODE defaults to 24. If any section of the

load module has an RMODE(24), RMODE defaults to 24. Valid RMODE values

are:

24 to indicate the module must reside below the 16 MB line

ANY to indicate the module can reside anywhere below the 2GB bar in

virtual storage

SPLIT to indicate that the program object is to be split into two segments

according to the RMODE of the CSECTs. SPLIT is supported only for

PM2 or PM3 format program objects.

LIB(data_set)

specifies names of one or more library data sets that are to be searched to find

modules referred to by the module being processed (that is, to resolve external

references).

BINDER | NOBINDER

BINDER

specifies that MVS use binder services for this load module or object

LOADGO Command

Chapter 1. TSO/E commands and subcommands 185

module rather than the loader service program. The binder can be used for

to read modules stored in a PDS and program objects in a PDSE or Unix

file. BINDER is the default.

NOBINDER

specifies that MVS not use binder services for this object module; the

loader service program is used to process the object module(s) into load

module(s).

CASE(UPPER | MIXED)

UPPER

specifies that the binder translates to uppercase all lowercase names found

in input modules, binder control statements, and LOADGO parameters.

UPPER is the default.

MIXED

specifies that the binder respect uppercase and lowercase names found in

input modules, control statements, call parameters, and LOADGO

parameters. If MIXED is specified, the binder treats two strings differently if

any character in one string is a different case than the corresponding

character in the second string. binder keywords are always translated to

uppercase.

COMPAT(MIN | CURR | CURRENT | LKED | PM1 | PM2 | PM3 | PM4 | release)

specifies binder compatibility level.

MIN

indicates the oldest level (PM2 or higher) that supports the features in the

object. This is the default.

CURRENT

indicates the latest level know to the binder.

CURR

is the abbreviation of CURRENT and has the same specification.

LKED

specifies that the binder process certain options, such as AMODE/RMODE

and reusability, in a manner compatible with the linkage editor.

PM1

specifies that the binder create a PM1-level program object or load module.

PM2

specifies that the binder create a PM2-level program object.

PM3

specifies that the binder create a PM3-level program object. PM3 is the

default.

PM4

is the minimum level that can be specified. A value of 64 is specified on the

AMODE option. Input modules contain 8-byte address constants and names

longer than 1024 characters.

release

v OSV2R8 through OSV210 (same as PM3)

v ZOSV1R1 and ZOSV1R2 (same as PM3)

v ZOSV1R3 and ZOSV1R4 (same as PM4)

v ZOSV1R5 and ZOSV1R6 (adds RMODE 64 for WSA)

v ZOSV1R7 (adds compression and relative/immediate hardware

instruction references across elements)

LOADGO Command

186 z/OS V1R9.0 TSO/E Command Reference

FILL(fill_byte)

specifies to the binder the byte value to be used to initialize uninitilalized

storage areas in the loaded program. This must be two hexadecimal digits or

the word NONE.

HOBSET(NO | YES)

NO

specifies that the binder NOT set the high-order bit (HOB) in V-type adcons

according to the AMODE of the target entry point. NO is the default.

YES

specifies that the binder set the high-order bit (HOB) in V-type adcons

according to the AMODE of the target entry point.

LINECT

specifies the number of lines (including heading and blank lines) contained on

each page of the binder listing. The valid range is 24-200 and 0. Zero indicates

a single, indefinitely long page, and values of 1-23 are forced to 24; however,

there are always page ejects at the beginning of the binder listing and the start

of the map, cross reference (XREF), and summary reports. LINECT defaults to

60 lines.

LIST | NOLIST | LIST(OFF | STMT | SUMMARY | NOIMPORT| ALL)

allows you to control the type of information included in the SYSPRINT data.

LIST is valid for both the linkage editor and the binder. LIST, with no value, is

equivalent to LIST (SUMMARY), and NOLIST is equivalent to LIST(OFF).

OFF

indicates that only messages will be printed. In a batch environment,

LIST(OFF) is equivalent to NOLIST.

STMT

indicates that messages and control statements to be printed. In a batch

environment, LIST(STMT) is equivalent to LIST.

NOIMPORT

produces the same output as SUMMARY except without IMPORT control

statements.

SUMMARY

indicates that messages, control statements, and a load summary report

(including processing options and module attributes) are to be printed.

ALL

indicates that all input activity (whether initiated by binder service calls or

control statements) and the load or save summary be logged.

PLILIB

specifies the partitioned data set named SYS1.PL1LIB is to be searched to

locate external symbols referred to by the module being processed.

PLIBASE

specifies the partitioned data set named SYS1.PLIBASE is to be searched to

locate external symbols referred to by the module being processed.

PLICMIX

specifies the partitioned data set named SYS1.PLICMIX is to be searched to

locate external symbols referred to by the module being processed.

FORTLIB

specifies the partitioned data set named SYS1.FORTLIB is to be searched to

locate external symbols referred to by the module being processed.

LOADGO Command

Chapter 1. TSO/E commands and subcommands 187

COBLIB

specifies the partitioned data set named SYS1.COBLIB is to be searched to

locate external symbols referred to by the module being processed.

TERM | NOTERM

TERM

specifies that you want any error messages directed to your terminal and

the PRINT data set. If both TERM and NOTERM are omitted, then TERM is

the default.

NOTERM

specifies that you want any error messages directed only to the PRINT data

set.

RES | NORES

RES

specifies the link pack area is to be searched for load modules (referred to

by the module being processed) before the specified libraries are searched.

If both RES and NORES are omitted, then RES is the default. If you specify

the NOCALL operand, the RES operand is not valid.

NORES

specifies the link pack area is not to be searched to locate modules referred

to by the module being processed.

MAP | NOMAP

MAP

specifies a list of external names and their real storage addresses are to be

placed on the PRINT data set. This operand is ignored when NOPRINT is

specified.

NOMAP

specifies external names and addresses are not to be contained in the

PRINT data set. If both MAP and NOMAP are omitted, then NOMAP is the

default.

CALL | NONCAL | NOCALL | NCAL

CALL | NONCAL

specifies the data set specified in the LIB operand is to be searched to

locate load modules referred to by the module being processed. CALL is

the default.

NOCALL | NCAL

specifies the data set specified by the LIB operand is not to be searched to

locate modules that are referred to by the module being processed. The

RES operand is not valid when you specify NOCALL.

LET(sev_code)

specifies a severity code, which if exceeded, will prevent execution of the

module. The severity code is the aggregate error level of all calls to the binder.

Valid values for severity code are 0, 4, 8, and 12. If LET is specified, it defaults

to LET(8); if LET is not specified it defaults to LET(4). NOLET is equivalent to

LET(0).

MSGLEVEL

specifies the severity level below which messages are not displayed. Valid

severity levels are 0, 4, 8, and 12. If a message has a severity lower than the

level indicated here, it is not printed, written to either print or terminal files, or

passed to the messages exit.

LOADGO Command

188 z/OS V1R9.0 TSO/E Command Reference

WKSPACE(value_1[,value_2])

specifies the maximum amount of user’s virtual storage available to the binder

below and above 16 MB. You do not need to include this operand unless you

have special virtual storage considerations such as the virtual storage between

two concurrent applications needs to balance. If coded, a minimum of

WKSPACE(96,1024) is suggested for all binder operations.

value_1

indicates the maximum amount (in KB) of user’s virtual storage available to

the binder below 16 MB in virtual storage. This value is optional; however,

be certain to code a comma (,) if only value_2 is specified.

value_2

indicates the maximum amount (in KB) of user’s virtual storage available to

the binder above 16 MB in virtual storage. This value is optional; however,

be certain to code a comma (,) if value_1 is not also specified.

SIZE(integer)

specifies the size, in bytes, of dynamic real storage that can be used by the

loader. If this operand is not specified, then the size defaults to the size

specified by your system programmer.

EP(entry_name)

specifies the external name for the entry point to the loaded program. If the

entry point of the loaded program is in a load module, you must specify the EP

operand. The maximum value length of EP has been extended from 8

characters to 64 characters.

NAME(program_name)

specifies the name that you want assigned to the loaded program.

XREF | NOXREF

XREF

A cross-reference list of external symbol usage is written to the print

destination. A map of symbol locations must be requested separately if

desired.

NOXREF

No cross-reference of external symbol usage is produced.

LISTPRIV(YES | NO)

Include a list of unnamed (private code) sections.

Note: This is a diagnostic tool to detect unnamed sections, which can cause

problems in rebinding. If any unnamed sections are found when running

with LISTPRIV(YES), a level 8 error message will be produced.

LOADGO command return codes

 Table 25. LOADGO command return codes

0 Processing successful.

8 Processing incomplete, system prompts you for additional information.

12 Processing unsuccessful.

LOADGO Command

Chapter 1. TSO/E commands and subcommands 189

|
|
|

LOADGO command examples

Example 1

Operation: Load and execute an object module.

Known:

v The name of the data set: SHEPD58.CSINE.OBJ
load csine print(*)

Example 2

Operation: Combine an object module and a load module, and then load and

execute them.

Known:

v The name of the data set containing the object module: LARK.HINDSITE.OBJ

v The name of the data set containing the load module:

LARK.THERMOS.LOAD(COLD)
load (hindsite thermos(cold)) print(*) +

lib(’sys1.sortlib’) +

nores map size (44k) ep (start23) name(thermsit)

Example 3

Operation: Combine and execute several object and load modules with differing

AMODE and RMODE attributes. The new load module should execute in 31-bit

addressing mode and be loaded anywhere in storage.

Known:

v The name of the main routine, a load module in 24-bit addressing mode:

MY.PROG.LOAD(MAIN)

v The names of two subroutines, which are updated with changes before loading;

both are AMODE(31) and RMODE(ANY): MY.SUB1.OBJ, MY.SUB2.OBJ
load (sub1 sub2 ’my.prog.load(main)’) print (*) amode(31)

rmode(any)

LOGOFF command

Use the LOGOFF command to terminate your terminal session. When you enter the

LOGOFF command, the system frees all the data sets allocated to you. Data

remaining in storage is lost.

If you intend to enter the LOGON command immediately to begin a new session

using different attributes, you are not required to LOGOFF. Instead, you can just

enter the LOGON command as you need to enter any other command.

If your terminal is a Systems Network Architecture (SNA) terminal that uses VTAM,

you might be required to use a format different from the one described here. Your

system programmer should provide you with this information.

When the LOGOFF command is executed in the background, your TSO/E session

is terminated normally. Any remaining commands in the input stream are ignored.

LOADGO Command

190 z/OS V1R9.0 TSO/E Command Reference

LOGOFF command syntax

��

LOGOFF
 DISCONNECT

HOLD

��

LOGOFF command operands

DISCONNECT

specifies the line is to be disconnected following logoff. If no operand is

specified, then DISCONNECT is the default.

HOLD

3

specifies the line is not to be disconnected following logoff.

LOGOFF command examples

Example 1

Operation: Terminate your terminal session.

logoff

LOGON command

Use the LOGON command to start a terminal session. If you are not familiar with

the logon process, see z/OS TSO/E User’s Guide.

Before you can use the LOGON command, your installation must provide you with

certain basic information:

v Your user identification (1-7 characters)

v A password (1-8 alphanumeric characters), if required by your installation. For a

RACF-defined user, your installation assigns a RACF password for you.

v An account number, if required by your installation

v A procedure name, if required by your installation

v For a RACF-defined user, a GROUP name, if required by your installation.

The information you enter with the LOGON command and its operands is used by

the system to start and control your time sharing session. At least, you are required

to identify yourself to the system with the user_identity operand. Mostly, you are

required to enter a password. Other operands are optional, or provide default

values, and allow you to control the way your session is to work. For example, you

can specify whether you want to receive messages from the system or from other

users while your session is active.

Full-Screen LOGON versus line mode LOGON

There are two types of LOGON command processing: full-screen LOGON

command processing and line mode LOGON command processing.

v If you are an IBM 3270 terminal user, using a display format of 24 x 80 (24 lines

of data by 80 characters on a line) or larger, you must use full-screen logon.

3. Not supported with terminals that use VTAM.

LOGOFF Command

Chapter 1. TSO/E commands and subcommands 191

Full-screen logon users need only enter logon user_id. TSO/E then displays a

full-screen logon menu with appropriate entry fields for both RACF and

non-RACF defined users.

If you enter more parameters than user_id on the LOGON command, TSO/E

accepts and processes them with the exception of the password fields. TSO/E

requires the password entries to be entered on the logon menu for full-screen

logon processing.

v If your terminal is such that full-screen LOGON command processing cannot be

used, then all of the logon information must be specified in line mode and you

might be prompted by the system to enter values for certain operands that are

required by your installation.

Full-Screen LOGON processing

After you have issued a LOGON command the full-screen logon command

processing performs the following:

v It displays a menu with the previous session’s logon parameter values. Logon

command parameters entered on the LOGON command override any default

values from the previous session.

v It requests that you enter a password. If you enter a not valid password, the

system will prompt you to re-enter it after you have pressed the Enter key.

v If your user ID is defined to RACF, it allows you to enter a new password on the

logon panel.

If you have entered a new password, and after pressing the Enter key, logon

processing prompts you to re-enter the new password in the same field a second

time to verify the password. If both entries of the new password match, logon

processing proceeds. Otherwise, logon processing displays a message that the

password verification failed. If this occurs, do one of the following:

– If you want to change your password, or if the system requires you to change

it because the old password is expired, enter again a new password. The

system will prompt you to enter the new password again for verification.

– If you do not want to change your password, press Enter without entering a

new password.

Note: Full-screen logon processing allows you to enter parameter values in any

of the menu fields before pressing the Enter key. Actual field verification

takes place after the Enter key is pressed. If you have entered a not valid

password, the system responds with message Password not authorized

for user ID after you press Enter, awaiting the correct password. Should

you have entered a not valid password and a new password, the system

responds with message Password not authorized for user ID. New

password ignored after you press Enter, and ignores any entry you did in

the new password field. You need to re-enter the new password after you

have corrected the original “Password not authorized ...” problem.

v Further, full-screen logon allows for modification and entry of logon parameter

values. You can type over existing values on the menu displayed. Existing values

are either from a previous session logon or from the current LOGON command

parameters.

v It displays RACF entry fields, if RACF is installed and active and the user ID is

RACF-defined.

v Full-screen logon allows you to enter a single TSO/E command up to 80

characters long on the logon menu. This command is executed after any

command entered in the PARM field on the EXEC statement of the LOGON

procedure. This command is also remembered from session to session.

LOGON Command

192 z/OS V1R9.0 TSO/E Command Reference

v It displays help information for all logon parameters whenever you can enter

USERID, PASSWORD, or RACF password. Help information is displayed for the

entry being prompted for and in all cases, except for the PASSWORD entry

fields, displays the user entered data as well.

Note: If your terminal uses VTAM, you might be required to use a format different

from the one described here. Your system programmer should provide you

with this information.

When the LOGON command is executed in the background, the system ignores

any remaining commands in the input stream and it has no effect on your

foreground TSO/E session, if you have one.

LOGON command syntax

�� LOGON user_identity

/password

/new_password

ACCT(account)
 �

�

PROC(procedure_name)

SIZE(integer)

 NOTICES

NONOTICES

 MAIL

NOMAIL

�

�
PERFORM(value)

RECONNECT

NORECONNECT

SECLABEL(security_label)
 �

�
GROUP(name)

OIDCARD
 ��

LOGON command operands

user_identity/password/new_password

specifies your user identification and, if required, a valid password or new

password. Your user identification must be separated from the password by a

slash (/) and, optionally, one or more standard delimiters (tab, blank, or

comma). Your identification and password must match the identification

contained in the system’s user attribute data set (UADS), if you are not

RACF-defined. If you are RACF-defined, you must enter the password defined

in the RACF data set as the value for password. The new password specifies

the password that is to replace the current password. new_password must be

separated from password by a slash(/) and, optionally, one or more standard

delimiters (tab, blank, or comma). new_password is 1 to 8 alphanumeric

characters long. This operand is ignored for non-RACF defined users. (Printing

is suppressed for some types of terminals when you respond to a prompt for a

password.)

 With z/OS V1R7 or later, the password and new_password can be in mixed

case, if your installation has enabled RACF mixed case password support.

ACCT(account)

specifies the account number required by your installation. If the UADS contains

LOGON Command

Chapter 1. TSO/E commands and subcommands 193

only one account number for the password that you specify, this operand is not

required. If the account number is required and you omit it, the system prompts

you for it.

 For TSO/E, an account number must not exceed 40 characters, and must not

contain a blank, tab, quotation mark, apostrophe, semicolon, comma, or line

control character. Right parentheses are permissible only when left parentheses

balance them somewhere in the account number.

PROC(procedure_name)

specifies the name of a cataloged procedure containing the job control

language (JCL) needed to initiate your session.

SIZE(integer)

specifies the maximum region size allowed for a conditional GETMAIN during

the terminal session. If you omit this operand, the UADS contains a default

value for your region size. The UADS also contains a value for the maximum

region size that you are allowed. If you specify a region size exceeding the

maximum region size allowed by the UADS (in this case, the UADS value

MAXSIZE is used), then this operand is rejected.

NOTICES | NONOTICES

specifies whether messages intended for all terminal users are to be listed at

your terminal during logon processing.

NOTICES

specifies messages are to be listed. NOTICES is the default.

NONOTICES

specifies no messages are to be listed.

MAIL | NOMAIL

specifies whether you want messages intended specifically for you to be

displayed at your terminal during logon processing.

MAIL

specifies that you want messages to be displayed. MAIL is the default.

NOMAIL

specifies that you do not want messages to be displayed.

PERFORM(value)

specifies the performance group to be used for the terminal session. The value

must be an integer from 1-999. However, the line mode LOGON limit is 255.

The default value is determined by the individual installation.

RECONNECT | NORECONNECT

RECONNECT

specifies that you are reconnecting to your session that has previously

become disconnected. If you are RACF-defined, RECONNECT remains in

effect across sessions until you specify NORECONNECT. However, if the

UADS contains your user information, then RECONNECT does not remain

in effect across sessions. If you specified a password in the disconnected

session, you must specify the same password with the RECONNECT

option. If RECONNECT is specified, then any operands other than user ID

and password are ignored.

NORECONNECT

specifies that you do not want automatic reconnect to be in effect for the

session you are logging onto.

LOGON Command

194 z/OS V1R9.0 TSO/E Command Reference

SECLABEL(security_label)

specifies a security label for your TSO/E session. The SECLABEL (security

label) may be 1 to 8 alphanumeric characters. The first character must be

alphabetic or one of the special characters #, $, or @. SECLABEL is

recognized only if your installation is using security labels and security checking

and you are RACF-defined. If you specify a SECLABEL for which you are not

authorized, you receive an error message and are prompted for another

SECLABEL. If you do not specify SECLABEL on the LOGON command, RACF

uses the default set by your administrator.

 If you log on to TSO/E in line mode and you want to use a SECLABEL other

than the default, you must include it each time you log on.

GROUP(name)

specifies a 1 to 8 character ID composed of alphanumeric characters. The first

character must be alphabetic or one of the special characters #, $, or @. This

operand is valid only for RACF-defined users. It will be ignored for users not

defined to RACF.

OIDCARD

specifies the operator identification card is to be prompted for after the LOGON

command has been entered. This operand is valid only for RACF-defined users.

 If you are not defined to RACF and enter this keyword, you are prompted for an

operator identification card. However, any data you enter is ignored. You can

also enter a null line in response to the prompt.

LOGON command examples

Example 1

Operation: Start a terminal session.

Known:

v Your user identification and password: WRRID/23XA$MBT

v Your installation does not require an account number or procedure name for

logon.
logon wrrid/23xa$mbt

Example 2

Operation: Start a terminal session.

Known:

v Your user identification and password: WRRID/MO@

v Your account number: 288104

v The name of a cataloged procedure: TS951

v You do not want to receive any broadcast messages.

v Your virtual storage space requirement: 90K bytes
logon wrrid/mo@ acct(288104) proc(ts951)-

 size(90) nonotices nomail

Example 3

Operation: Start a terminal session.

Known:

v Your user identification and password: WRRID/XTD18

v Your account number: 347971

v The name of a cataloged procedure: RS832

v Your virtual storage space requirement: 90K bytes

LOGON Command

Chapter 1. TSO/E commands and subcommands 195

v The security label for the session: CONFDNTL
logon wrrid/xtd18 acct(347971) proc(rs832)-

 size(90) seclabel(confdntl)

MVSSERV command

Use the MVSSERV command to start an TSO/E Enhanced Connectivity Facility

session between an IBM Personal Computer (PC) and an IBM host computer

running TSO/E on MVS. The TSO/E Enhanced Connectivity Facility is a set of

programs that allows a PC user to request services from a host program. The PC

requesting program is referred to as the requester. The host program that executes

the corresponding service is referred to as the server. For more information about

IBM-supplied servers that you can use with the TSO/E Enhanced Connectivity

Facility, see Introduction to IBM System/370 to IBM Personal Computer Enhanced

Connectivity Facilities.

By using the operands on the MVSSERV command, you can accumulate all, some,

or no diagnostic information in a trace data set. The diagnostic information includes

the following:

v Informational and error messages

v An execution path table that tracks module calls

v Requests and replies sent between the PC and the host

However, before using MVSSERV, you must have certain pre-allocated data sets.

Your installation may have already pre-allocated those data sets for you. They are

described in z/OS TSO/E Guide to SRPI. The guide also describes how to write

and install servers.

MVSSERV command syntax

��

MVSSERV
 NOTRACE

TRACE

IOTRACE

��

MVSSERV command operands

NOTRACE

runs MVSSERV without sending messages to a trace data set. Use NOTRACE

for production work. When testing or debugging a program, use TRACE or,

preferably, IOTRACE, to obtain complete diagnostic information about the

MVSSERV session. NOTRACE is the default.

TRACE

records all terminal messages and most diagnostic messages in a trace data

set. The TRACE operand requires a pre-allocated trace data set in which to

store the messages. Your system programmer may have allocated the data set

for you. See z/OS TSO/E Guide to SRPI for information about how to allocate

the trace data set.

IOTRACE

records all terminal messages and all diagnostic messages in a trace data set.

In addition to the messages recorded with the TRACE operand, the IOTRACE

operand records communication information about data flow and data sent

between the host and the PC.

LOGON Command

196 z/OS V1R9.0 TSO/E Command Reference

MVSSERV command return codes

 Table 26. MVSSERV command return codes

0 Processing successful.

4 Processing unsuccessful.

MVSSERV command examples

Example 1

Operation: Start an TSO/E Enhanced Connectivity Facility session program for

production.

MVSSERV

or

MVSSERV NOTRACE

Example 2

Operation: Start a TSO/E Enhanced Connectivity Facility session and record all

terminal messages and all diagnostic messages in the trace data set.

MVSSERV IOTRACE

Example 3

Operation: Start a TSO/E Enhanced Connectivity Facility session and record all

terminal messages and some diagnostic messages in the trace data set.

OUTDES command

Use the OUTDES command to create or reuse a dynamic output descriptor. An

output descriptor defines output characteristics that will be referenced by a

SYSOUT data set. OUTPUT JCL statements in the LOGON procedure can also be

used to define output descriptors.

The OUTDES operand of the ALLOCATE command and the PRINTDS command

allow you to specify a list of installation-defined output descriptors that were created

by OUTPUT JCL statements in the LOGON procedure and by the OUTDES

command. You can specify up to 128 output descriptors associated with a SYSOUT

data set. See the “ALLOCATE command” on page 17 or the “PRINTDS command”

on page 219 for more information.

Use operands on the OUTDES command to specify the following information:

v The name of the output descriptor to be created

v The NEW operand to create the output descriptor. The REUSE operand to

replace an existing output descriptor.

v Output characteristics. The format and meanings of the output characteristics are

described in z/OS MVS JCL Reference.

For information about special considerations when using OUTDES, see z/OS MVS

Programming: Authorized Assembler Services Guide.

OUTDES command syntax

MVSSERV Command

Chapter 1. TSO/E commands and subcommands 197

��

OUTDES

output_descriptor_name
 NEW

REUSE

 NOBURST

BURST

�

�

�

,

CHARS(

charname

)

�

,

ADDRESS(

delivery_address

)

'delivery_address'

 �

�
BUILDING(

building_identification

)

'building_identification'

CKPTLINE(nnnnn)
 �

�
CKPTPAGE(nnnnn)

CKPTSEC(nnnnn)

CLASS(output_class)
 �

�
COMPACT(compaction_table_name)

CONTROL(

PROGRAM

)

SINGLE

DOUBLE

TRIPLE

 �

�

�

COPIES(nnn

)

,

,(

group_value

)

DATACK(

BLKCHAR

)

BLKPOS

BLOCK

UNBLOCK

 �

�
DEFAULT

NODEFAULT

DEPT(

department_identification

)

'department_identification'

 �

�
DEST(

destination

)

destination.user_id

DPAGELBL

NODPAGELBL

FCB(fcb_name)
 �

�
FLASH(overlay_name,

)

copies

FORMDEF(member_name)
 �

�
FORMS(forms_name)

GROUPID(output_group_name)

1

INDEX(

nn

)

 �

�
1

LINDEX(

nn

)

LINECT(nnn)

MODIFY(module_name

)

,trc

 �

OUTDES Command

198 z/OS V1R9.0 TSO/E Command Reference

�
PAGEDEF(member_name)

NAME(

preferred_name

)

'preferred_name'

 �

�

�

,

NOTIFY(

user_id

)

'node.user_id'

 �

�
OUTDISP(normal_output_disp,abnormal_output_disp)

 �

�
PIMSG(

)

16

YES

,

nnn

NO

PRMODE(process_mode)

PRTY(nnn)
 �

�
SYSAREA

NOSYSAREA

ROOM(

room_identification

)

'room_identification'

 �

�

TITLE(

description_of_output

)

'description_of_output'

THRESHLD(nnnnnnnn)

 NOTRC

TRC

�

�
UCS(ucs_name)

WRITER(external_writer_name)
 �

�

�

,

USERLIB(

library_name

)

'library_name'

�

,

USERDATA(

value

)

'

value n

'

 �

�
OUTBIN(output_bin_id)

 ��

OUTDES command operands

output_descriptor_name

specifies the name of the output descriptor to be created or reused. This

operand is required. Specify 1 to 8 alphanumeric characters for the name. The

first character must be alphabetic or one of the special characters #, $, or @.

 The OUTDES operand of the ALLOCATE, PRINTDS, and FREE commands

refers to the output_descriptor_name specified.

NEW | REUSE

OUTDES Command

Chapter 1. TSO/E commands and subcommands 199

NEW

specifies that a new output descriptor is to be created. If an output

descriptor with the same name exists, the system ends your request

unsuccessfully. NEW is the default.

REUSE

specifies that if an output descriptor with the same name is found, the new

definition replaces the old one. If an output descriptor with the same name

does not exist, OUTDES creates a new output descriptor name.

BURST | NOBURST

BURST

specifies that 3800 output is to be burst into separate sheets.

NOBURST

specifies that the printed 3800 output is to be in continuous fanfold pages.

NOBURST is the default.

 The following parameters are passed on to the scheduler facility, for more

information about these parameters see the OUTDES command in z/OS

MVS JCL Reference.

CHARS(charname{,...})

specifies one or more font (character arrangement) tables for printing the

SYSOUT data set on a 3800 or 3900 printer. You can specify up to four table

names. Specify 1 to 4 alphabetic, numeric, or the special characters #, $, or @

for the character name.

 For more information about font (character arrangement) tables, see IBM 3800

Printing Subsystem Programmer’s Guide.

ADDRESS(delivery_address)

specifies the delivery address for system output (SYSOUT). This address prints

on the separator pages. You can specify from 1 to 4 delivery addresses. For

each delivery address, you can specify from 1 to 60 EBCDIC characters. Refer

to “Coding rules” on page 209 for the valid characters allowed with and without

quotation marks.

BUILDING(building_identification)

specifies the building location associated with the SYSOUT. The building

location prints on the separator pages. You can specify from 1 to 60 EBCDIC

characters. Refer to “Coding rules” on page 209 for the valid characters allowed

with and without quotation marks.

CKPTLINE(nnnnn)

specifies the maximum number of lines contained in a logical page. Specify a

value from 0 to 32767. The system uses this value either for JES checkpointing

of printed output or for SNA transmission checkpoints. Use CKPTLINE in

combination with the CKPTPAGE operand.

 If you do not specify CKPTLINE, JES uses an installation default specified at

initialization.

CKPTPAGE(nnnnn)

specifies the maximum number of pages to be printed or transmitted before the

next SYSOUT data set checkpoint occurs. Specify a value from 1 to 32767.

This value represents the number of pages to be transmitted as a single SNA

chain when data is transmitted to a SNA workstation. Use CKPTPAGE in

combination with the CKPTLINE operand.

OUTDES Command

200 z/OS V1R9.0 TSO/E Command Reference

|
|
|
|

|
|

If you do not specify CKPTPAGE, JES uses the installation default specified at

initialization. The default may also indicate whether checkpoints are to be based

on page count or time.

CKPTSEC(nnnnn)

specifies the number of seconds that are to elapse between checkpoints of the

SYSOUT data set that is printing. Specify a value from 1 to 32767.

 If you do not specify CKPTSEC, JES uses the installation default specified at

initialization. The default may also indicate whether checkpoints are to be based

on page count or time.

CLASS(output_class)

specifies the output class JES is to use for processing the specified SYSOUT

data set. Valid output classes are characters A–Z, 0–9, or *. The CLASS

parameter is equivalent to the CLASS parameter of the OUTPUT JCL

statement. The attributes of each output class, including the default, are defined

during JES initialization. Specifying an * requests the output class defined in the

MSGCLASS parameter in the JCL for the LOGON procedure that is running.

For information about the OUTPUT JCL statement, see z/OS MVS JCL

Reference.

Note: When you allocate a SYSOUT data set, JES selects the output CLASS

value using the following search order:

1. Output class specified on your user ID at logon

2. Output class specified on the ALLOCATE command

3. Output class specified on a referenced or default output descriptor

COMPACT(compaction_table_name)

specifies the name of the compaction table to be used when the data set is

transmitted to a workstation. Specify a 1 to 8 alphanumeric character symbolic

name. If you do not specify COMPACT, compaction is suppressed for the data

set.

CONTROL({PROGRAM | SINGLE | DOUBLE | TRIPLE})

specifies the type of forms control to be used.

PROGRAM

indicates that the carriage control character of each data record is to control

line spacing on the form. PROGRAM is the default. The carriage control

characters are given in DFSMS/MVS Macro Instructions for Data Sets.

SINGLE

indicates forced single spacing.

DOUBLE

indicates forced double spacing.

TRIPLE

indicates forced triple spacing.

COPIES(nnn[,(group_value)])

specifies the number of copies to be printed for the data set. The number of

copies, nnn, can range from 1 to 255, subject to an installation limit. The default

is 1.

 If you use COPIES in a referenced FORMDEF memeber (described later), the

system ignores the COPIES value.

 If you specify group values, the system ignores the individual value, nnn, for the

3800 printer. The group values describe how the printed copies are to be

grouped (3800 printer only). Each group value specifies the number of copies of

OUTDES Command

Chapter 1. TSO/E commands and subcommands 201

each page that are to be grouped together. You can specify up to 8 group

values. For example, a group value of 3 causes the first page of a data set to

be printed three times before printing is started for the second page, which

might also be printed three times, and so forth.

DATACK({BLKCHAR | BLKPOS | BLOCK | UNBLOCK})

specifies whether “print positioning” and “invalid character” data check errors

are to be blocked or unblocked for printers accessing through the functional

subsystem Print Services Facility™ (PSF).

BLKCHAR

specifies character errors that are not valid are to be blocked. The errors

are not reported to PSF. Print positioning errors are reported normally.

BLKPOS

specifies print positioning errors are to be blocked, and not reported to PSF.

BLOCK

specifies neither print positioning errors nor character errors that are not

valid are reported to PSF.

UNBLOCK

specifies both print positioning errors and character errors that are not valid

are reported to PSF.

 If you do not specify DATACK, the DATACK specification from the PSF

PRINTDEV statement is used. If it is not specified in the PRINTDEV statement,

the default is BLOCK.

DEFAULT | NODEFAULT

DEFAULT

specifies that the output descriptor defined by this OUTDES command is

the default output descriptor. SYSOUT data sets that do not explicitly refer

to an output descriptor use the output characteristics specified in this

OUTDES command.

NODEFAULT

specifies that an ALLOCATE or PRINTDS command must explicitly

reference the output descriptor to use the defined output characteristics

specified in this OUTDES command.

Note: When a default output descriptor is defined with a CLASS value, TSO/E

commands such as ALLOCATE, PRINTDS, and SMCOPY may use their

own default output class instead.

DEPT(department_identification)

specifies the department identification associated with the SYSOUT. This

department identification prints on the separator pages. You can specify from 1

to 60 EBCDIC characters. Refer to “Coding rules” on page 209 for the valid

characters allowed with and without quotation marks.

DEST(destination | destination.user_id)

specifies the destination of a remote workstation, a user at a specific remote

workstation, or an ip-network-address to which the output is routed for

processing. You can specify from 1 to 8 characters for either destination or

user_id.

 For information about what you can specify for destination or

destination.user_id, see z/OS MVS JCL Reference.

OUTDES Command

202 z/OS V1R9.0 TSO/E Command Reference

DPAGELBL | NODPAGELBL

specify whether the system is to print a security-related character string on each

page of output.

DPAGELBL

specifies that the system is to print the character string. The character string

is associated with a security label (typically the security label of the user’s

current session). Your installation determines the character string used.

NODPAGELBL

specifies that the character string is to be suppressed. You must have the

appropriate RACF access authority to override page labeling. If you need to

override DPAGELBL but are unable to, check your installation security

procedures or see your RACF security administrator.

FCB(fcb_name)

specifies the name of the forms control buffer (FCB) or image to be used for the

3211, 3203-5, or 3800 printers. The name of the FCB is a 1 to 4 alphanumeric

character string consisting of the last 1 to 4 characters of the following:

v FCB2xxxx member for the 3211 or 3203-5 printer or printers supported by

System Network Architecture (SNA)

v FCB3xxxx member for the 3800 printer.

For more information about the forms control buffer, see:

v z/OS DFSMSdfp Advanced Services

v IBM 3800 Printing Subsystem Programmer’s Guide

FLASH(overlay_name[,copies])

specifies the name of a forms overlay, which can be used by the 3800 Printing

Subsystem. The overlay is “flashed” on a form or other printed information over

each page of output. The forms overlay_name must be 1 to 4 alphabetic,

numeric, or special characters #, $, or @. Optionally, you can specify the

number of copies on which the overlay is to be printed. The count can range

from 0 to 255. To flash no copies, specify a count of zero.

FORMDEF(member_name)

specifies the member name of a partitioned data set containing information that

the Advanced Function Printer (AFP™ 3800-3 or 3800-8) uses to print a data

set. The member can contain the following information:

v The overlays that are to be invoked during output processing

v The location on the page where the overlays are to be placed

v The suppressions that can be activated for specified page formats.

The member name contains a maximum of 6 characters, of which the first 2 are

predefined by your installation. For the last 4 characters, specify alphabetic,

numeric, or the special characters #, $, or @.

FORMS(forms_name)

specifies the name of the form on which the output is to be printed. Specify 1 to

8 alphabetic, numeric, or the special characters #, $, or @ for the forms name.

 If you do not specify FORMS, JES uses the installation default specified at

initialization.

GROUPID(output_group_name)

specifies the name to be used by JES to identify which of a job’s SYSOUT data

sets are to form an output group. The output group name consists of 1 to 8

alphanumeric characters and is selected by the system programmer to define

an output group for the job.

OUTDES Command

Chapter 1. TSO/E commands and subcommands 203

INDEX(nn)

specifies a value indicating the data set indexing print offset (to the right) for the

3211 printer with the indexing feature. The width of the print line is reduced by

the value of INDEX. Specify a value from 1 to 31. The value 1 indicates flush

left. The values 2 to 31 indent the print line by nn-1 positions.

 The default is 1, which indicates flush left.

LINDEX(nn)

specifies a value indicating the data set indexing print offset (to the left) for the

3211 printer with the indexing feature. The width of the print line is reduced by

the value of LINDEX. Specify a value from 1 to 31. The value 1 indicates flush

right. The values 2 to 31 move the right margin over by nn-1 positions.

 The default is 1, which indicates flush right. LINDEX is ignored on printers other

than the 3211 printer.

LINECT(nnn)

specifies the number of lines that are to be printed before overflow processing.

Specify a value from 0 to 255. If you specify zero, no overflow processing is

done.

 If you do not specify LINECT, JES obtains the value from one of the following:

1. The LINECT field of the accounting information parameter on the JCL JOB

statement.

2. The installation default specified at JES initialization.

MODIFY(module_name[,trc])

specifies the name of a copy modification module, which is loaded into the 3800

or 3900 Printing Subsystem. This module contains predefined data such as

legends, column headings, or blanks. The module specifies where and on which

copies the data is to be printed. USE IEBIMAGE to define and store the module

in the SYS1.IMAGELIB system data set. Specify 1 to 4 alphabetic, numeric, or

the special characters #, $, or @ for the module_name.

 The table reference character (TRC) corresponds to the character set(s)

specified on the CHARS operand. Values are 0 for the first table-name, 1 for

the second, 2 for the third, or 3 for the fourth.

NAME(preferred_name)

specifies the preferred name to be associated with the SYSOUT. The name

prints on the separator pages to identify the owner of the SYSOUT. You can

specify from 1 to 60 EBCDIC characters. Refer to “Coding rules” on page 209

for the valid characters allowed with and without quotation marks.

NOTIFY({user_id | node.user_id} ...)

specifies the user ID that is to receive a print completion message. The

message identifies the output that has completed printing and indicates whether

the printing was successful. You can specify 1 to 4 user IDs to which to send

the print completion message.

 A JES2 system issues the print complete message when all the SYSOUT data

sets for an output group have printed. An output group consists of the SYSOUT

data sets printed between the output header page and the output trailer page of

a job. A JES3 system issues the print complete message when the SYSOUT

data sets for the same printer and the same job have printed.

 If you do not specify node, NOTIFY defaults to the node where the job was

submitted.

OUTDES Command

204 z/OS V1R9.0 TSO/E Command Reference

|
|
|
|
|
|

|
|
|

OUTDISP(normal_output_disp, abnormal_output_disp)

specifies the disposition(s) for the output data set for normal and abnormal

program terminations.

normal_output_disp

is the disposition for the output data set when the job completes normally.

The default for this parameter is WRITE, unless the installation has chosen

a different default disposition.

abnormal_output_disp

is the disposition for the output data set when the job completes abnormally.

This parameter defaults to the disposition specified in normal-output-
disposition, if one was specified. Otherwise, it defaults to the installation

default (WRITE).

 You can specify one of the following for either or both of the positional

parameters:

WRITE

specifies that the output file is to be deleted immediately after processing.

HOLD

specifies that the output data is to be held until released by the TSO/E user

or operator. Releasing the output changes its disposition to WRITE.

KEEP

specifies that the output file is to be processed. After processing, the data

set disposition changes to LEAVE.

LEAVE

specifies that the output data is to be held until released by the TSO/E user

or operator. Releasing the output changes its disposition to KEEP.

PURGE

specifies that the output data set should be deleted before processing.

PAGEDEF(member_name)

specifies the member of a partitioned data set containing information that the

Advanced Function Printer (AFP) uses to print the data set. The member can

contain the following information:

v Logical page size and width

v Fonts

v Page segments

v Multiple page types or formats

v Lines within a page; for example, line origin, carriage controls, and spacing

v Multiple logical pages on a physical page.

The member name contains a maximum of 6 characters, of which the first 2 are

predefined by your installation. For the last 4 characters, specify alphabetic,

numeric, or the special characters #, $, or @.

PIMSG[(YES,nnn) | (NO,nnn)]

specifies whether messages are to be printed. Values are 0 through 999. The

value specifies that the system is to cancel the printing of the current data set

after the specified number of errors have been either:

v Detected by the functional subsystem (FSS), or

v Reported to FSS by the printer.

PIMSG(YES)

specifies that messages generated by FSS are to be printed.

PIMSG(YES,16) is the default.

OUTDES Command

Chapter 1. TSO/E commands and subcommands 205

PIMSG(NO)

specifies that messages are to be suppressed.

 If you specify nnn as zero, the system does not cancel the printing of the

current data set.

PRMODE(process_mode)

specifies the process mode to be used to schedule output data sets either to

output devices running under a functional subsystem (FSS) or to an output

device managed by JES. For a list of valid process modes, contact your system

programmer. If you do not specify PRMODE, JES might determine the process

mode based on the content of the data. Specify 1 to 8 alphabetic or numeric

characters for the process mode.

 Use PRMODE to indicate the type of processing you want for a data set. You

can use it to direct JES scheduling of this data set to a particular output FSS or

JES writer. You can also use PRMODE to request specific processing of a

Network Job Entry (NJE) transmitted data set at the destination node without

knowing the device name or a SYSOUT class.

PRTY(nnn)

specifies the initial selection priority for the data set. Specify a value from 0 to

255, where 0 is the lowest output processing priority and 255 is the highest

output processing priority.

Note: The PRTY(n) option will be ignored, unless the JES2 initialization

parameter OUTDEF PRTYOUT=YES is also specified. For details refer

to z/OS JES2 Initialization and Tuning Reference or contact your JES2

system programmer.

ROOM(room_identification)

specifies the room identification to be associated with the output data set. This

room identification prints on the separator pages. You can specify from 1 to 60

EBCDIC characters. Refer to “Coding rules” on page 209 for the valid

characters allowed with and without quotation marks.

SYSAREA | NOSYSAREA

SYSAREA

specifies that the system printable area is to be reserved for printing a

character string associated with a security label. SYSAREA is the default.

NOSYSAREA

specifies that you want to print on the entire page of output (including the

system printable area) for the current printing. Here, the system area is not

reserved for printing a security character string. You must have the

appropriate RACF access authority to override page labeling. If you need to

override the system area but are unable to, check your installation security

procedures or see your RACF security administrator.

THRESHLD(nnnnnnnn)

specifies the maximum number of records for the sysout data set. For more

information see OUTDES command in the z/OS MVS JCL Reference. This

applies to JES3 only.

TITLE(description_of_output)

specifies the report title to be associated with the output file. This title prints on

the separator pages. You can specify from 1 to 60 EBCDIC characters. Refer to

“Coding rules” on page 209 for the valid characters allowed with and without

quotation marks.

OUTDES Command

206 z/OS V1R9.0 TSO/E Command Reference

TRC | NOTRC

TRC

specifies whether the data records contain table reference character (TRC)

codes. The codes identify the font to be used to print each record.

 A TRC code immediately follows the carriage control character, if any. Its

value corresponds to either one of the four fonts specified by CHARS or

one of the fonts in the PAGEDEF font list. PAGEDEF allows more than four

fonts to be specified.

NOTRC

specifies that the data set does not contain TRC codes. NOTRC is the

default.

UCS(universal_character_set_name)

specifies the name for the universal character set. Specify up to 4 alphabetic,

numeric, or the special characters #, $, or @. If you process the print data set

through PSF and do not specify CHARS, the system uses the UCS as the font

name.

 For more information about universal character sets, see DFSMS/MVS

Advanced Services.

WRITER(external_writer_name)

specifies a name for use in processing or selecting a SYSOUT data set. If you

specify the external writer name, the output data set is written under the control

of that external writer rather than the control of JES2 or JES3. The writer name

can contain 1 to 8 alphabetic, numeric, or the special characters #, $, or @.

 For more information about external writers, see z/OS MVS Using the

Subsystem Interface.

USERDATA(value)

specifies the installation-defined values for the installation’s prescribed

processing. If your installation has defined further keywords through installation

exits, that optional processing can be requested on the output descriptor with

this keyword. Refer to your installation’s definition for the intended use of this

keyword operand.

 You can code up to 16 installation-defined values for this keyword as previously

specified by your installation. Each value can be 1 to 60 EBCDIC text

characters. Apostrophes around each value are required if the string contains a

blank, comma, tab, or semicolon; apostrophes are optional for all other EBCDIC

characters. However, if the string contains an apostrophe, code two

apostrophes and enclose the entire string in single apostrophes such as

USERDATA(’USERKEY1=User’s value’). Null positions such as

USERDATA(value_1,,value_3) or USERDATA(,value_2,value_3) are not allowed.

USERLIB(library_name {,library_name ...})

specifies the data set name(s) of the libraries that contain the Advanced

Function Printer (AFP) resources that the Print Services Facility (PSF) uses

when processing the SYSOUT data set. The AFP resources that specify how

the PSF is to print the SYSOUT data set are:

v Fonts

v Page Segments

v Overlays

v Pagedefs

v Formdefs

Note: This parameter is not supported for PSF/MVS direct-attached printing.

OUTDES Command

Chapter 1. TSO/E commands and subcommands 207

You can use user libraries to maintain secure resources (such as signatures in

private data sets), keep resources that are being tested in a private data set

during the test period, or personalize and maintain your own library.

 PSF searches for resources first in the resource libraries specified by USERLIB,

then in the system-defined resources.

 library_name specifies the data set name of a library containing the Advanced

Function Printer (AFP) resources. The specified library can contain any AFP

resources.

 The data set name must follow the rules for MVS data set names. See z/OS

MVS JCL Reference, for the rules regarding data set names. If the application

supports the specification of unqualified data set names and you specify the

USERLIB parameter without quotation marks, the specified data set name is

concatenated to the system-defined high-level qualifier.

 If you do not specify the USERLIB parameter, only the system and installation

print resources are available for use.

 A library is a partitioned data set (PDS). Member names are the same as the

requested resource. When you create a member, the member name should be

unique to all libraries in the search concatenation.

 When you use the USERLIB keyword:

v You must have read access (for example, via RACF) to libraries specified by

USERLIB.

v Libraries must be cataloged in a catalog that is available to PSF/MVS.

v Libraries must be accessible to PSF while processing the SYSOUT data set.

v Library data sets are dynamically deallocated after PSF has processed the

SYSOUT data set.

Refer to PSF/MVS Application Programming Guide for more information about

the USERLIB keyword.

OUTBIN(output_bin_id)

4

specifies the media destination for the SYSOUT data set to be processed by

JES2 or by JES3. output_bin_id specifies the identifier of the printer output bin

on the IBM family of Advanced Function Printers supporting multiple output

bins.

 The valid range for output_bin_id is 1 to 65,535. No default value is provided.

 If no OUTBIN operand is given, the Print Services Facility (PSF) will stack the

output in the default output bin.

 If no output_bin_id value is provided with the OUTBIN operand (for example,

OUTDES OUT1 OUTBIN is entered), the system will prompt you for the required

value by issuing the following message:

ENTER PRINTER OUTPUT BIN ID

If a value for output_bin_id is specified that is not one of the supported ones,

PSF will stack the output in the printer’s default output bin and issue a message

indicating that the requested bin is not available.

4. The OUTBIN operand on the TSO/E OUTDES command is the equivalent to the OUTBIN keyword of the JCL OUTPUT statement.

OUTDES Command

208 z/OS V1R9.0 TSO/E Command Reference

For more information about multiple media destinations and OUTBIN processing

see PSF/MVS Application Programming Guide.

Coding rules

v The following characters are valid in strings with quotation marks:

– Any valid EBCDIC character

– Two consecutive single quotation marks to specify a single quote in a quoted

string

– Enclose values that contain blanks in quotation marks.

– A semicolon (;) is allowed within a quoted string unless you are issuing the

command under ISPF or PCF. When under ISPF or PCF, the semicolon or the

alternate character your installation may have specified as the command

delimiter, still functions as a command delimiter and may cause a syntax error.

v The following characters are valid in strings without quotation marks:

– Alphanumeric

– Special Characters:

- @ is represented as X'7C'

- $ is represented as X'5B'

- # is represented as X'7B'.

Character sets that use hexadecimal representations other than those listed

previously might cause an error.

OUTDES command return codes

 Table 27. OUTDES command return codes

0 Processing successful.

12 The installation exit requested termination.

16 Processing unsuccessful.

OUTDES command examples

Example 1

This example shows how the OUTDES, ALLOCATE, and FREE commands work

together to define, reference, and free the dynamic output descriptor.

Operation: Specify the OUTDES command to define the dynamic output descriptor.

Known:

v Name of the new output descriptor: MULTCOPY

v Number of copies: 3

v Pages are to be burst

v Output class: I
outdes multcopy copies(3) burst class(i) new

Operation: Specify the ALLOCATE command to reference the dynamic output

descriptor.

Known:

v Name of the file: SYSPRINT

v Name of the output descriptor: MULTCOPY
allocate file(sysprint) new outdes(multcopy)

OUTDES Command

Chapter 1. TSO/E commands and subcommands 209

Operation: Specify the FREE command to free the file and the dynamic output

descriptor.

Known:

v Name of the file: SYSPRINT

v Name of the output descriptor: MULTCOPY
free file(sysprint) outdes(multcopy)

Example 2

Operation: Specify the OUTDES command to define the dynamic output descriptor.

Known:

v Name of the output descriptor: ONECOPY

v Number of copies: 1

v No security labels are to be printed on pages.

v Pages are to be burst.
outdes onecopy copies(1) nodpagelbl burst new

Example 3

Operation: Specify the OUTDES command to reuse the dynamic output descriptor.

Known:

v Name of the output descriptor: MULTCOPY

v Number of copies: 3

v The output will fill the whole page including the system printable area.

v Replace the existing MULTCOPY output descriptor.
outdes multcopy copies(3) nosysarea reuse

Example 4

Operation: Specify the OUTDES command to print routing information about the

separator pages.

Known:

v Name of the new output descriptor: NEWDEST

v Address for delivery is:

– IBM Corporation

– P.O. Box 950

– Poughkeepsie, NY

– 12602
v Building to use for distribution: 510

v Data set disposition if the job completes normally: KEEP

v Data set disposition if the job completes abnormally: PURGE

v DEPT to be placed on the report: Payroll

v NAME to be placed on the report: J. Plant

v Room to be placed on the report: Conference Room ’A’

v Title to be placed on the report: OVER-TIME
outdes newdest("_")

address(’IBM Corporation’,’P.O. Box 950’,’Poughkeepsie, NY, 12602’)

building(510) outdisp(keep,purge) dept(Payroll)

name(’J. Plant’) room(’Conference Room ’A’’)

title(OVER-TIME)

Example 5

Operation: Specify the OUTDES command with a default normal disposition and a

specified abnormal disposition.

OUTDES Command

210 z/OS V1R9.0 TSO/E Command Reference

Known:

v Name of the new output descriptor: DESTA

v Default data set disposition if the job completes normally: WRITE

v Data set disposition if the job completes abnormally: PURGE
outdes desta outdisp(,purge)

Example 6

Operation: Specify the OUTDES command with a specified normal disposition and

default abnormal disposition.

Known:

v Name of the new output descriptor: DESTB

v Data set disposition if the job completes normally: PURGE

v Default data set disposition if the job completes abnormally: PURGE
outdes destb outdisp(purge)

Example 7

Operation: Specify the OUTDES command with specified normal and abnormal

dispositions.

Known:

v Name of the new output descriptor: DESTC

v Data set disposition if the job completes normally: PURGE

v Data set disposition if the job completes abnormally: HOLD
outdes destc outdisp(purge,hold)

Example 8

Operation: Specify the OUTDES command to define a user library for PSF

resources.

Known:

v Name of the new output descriptor: NEWDESC

v Page definition name to be used: STNDRD

v Libraries to be searched: USER.PRIVATE.RESOURCE and then

GROUP.PRIVATE.RESOURCE
outdes newdesc new pagedef(stndrd)("_")

userlib(’user.private.resource’,’group.private.resource’)

OUTPUT command

Use the OUTPUT command to:

v Direct the output from a job to your terminal. The output includes the job’s job

control language statements (JCL), system messages (MSGCLASS), and system

output (SYSOUT) data sets.

v Direct the output from a job to a specific data set.

v Delete the output for jobs.

v Change the output class(es) for a job.

v Route the output for a job to a remote workstation.

v Release the output for a job for printing by the subsystem.

OUTPUT is a foreground-initiated-background (FIB) command. This command is

generally used in conjunction with SUBMIT, STATUS, and CANCEL commands.

OUTDES Command

Chapter 1. TSO/E commands and subcommands 211

The OUTPUT command applies to all jobs whose job names begin with your user

identification. Access to jobs whose job names do not begin with a valid user

identification must be provided by an installation-written exit routine. The SUBMIT,

STATUS, and CANCEL commands apply to batch jobs. You must have special

permission to use these commands.

You can simplify the use of the OUTPUT command by including the NOTIFY

keyword either on the JOB card or on the SUBMIT command when you submit a

job for batch processing. The system notifies you when the job terminates, giving

you the opportunity to use the OUTPUT command. MSGCLASS and SYSOUT data

sets should be assigned to reserved classes or explicitly held to be available at the

terminal.

If your installation uses security labels and security checking, the output for a job

has a security label associated with it. To use the OUTPUT command to process

job output, the security label you are logged on with must be equal to or greater

than the security label at which the job ran.

Note: You cannot specify both the KEEP and DEST keywords while using the

OUTPUT command. These two keywords, when specified together with the

OUTPUT command, cause a message to appear stating that the

specification is not valid because of conflicting keywords.

OUTPUT command syntax

��

OUTPUT

OUT

�

,

(

jobname

)

(jobid)

�

CLASS(

class_name

)

�

�

*

PRINT(

dsname

)

 HERE

BEGIN

NEXT

 NOPAUSE

PAUSE

 NOKEEP

KEEP

 NOHOLD

HOLD

�

�
DELETE

NEWCLASS(class_name)

DEST(remote_station_id)
 ��

OUTPUT command operands

(jobname (jobid))

specifies one or more names of batch or foreground jobs. The job name for

foreground session is user ID. Each job name must begin with your user

identification and, optionally, can include one or more additional characters

unless the default IBM-supplied installation exit that scans and checks the job

name and user identification is replaced by a user-written routine. The system

processes the held output from the jobs identified by the job name list.

OUTPUT Command

212 z/OS V1R9.0 TSO/E Command Reference

To avoid duplicate job names, you should include the optional job ID for

uniqueness. The job ID is a unique job identifier assigned by the job entry

subsystem (JES) at the time the job was submitted to the batch system.

Currently the only valid forms of job identifiers (jobid) assigned by JES are:

v JOBnnnnn or Jnnnnnnn – Jobs

v STCnnnnn or Snnnnnnn – Started Tasks

v TSUnnnnn or Tnnnnnnn – TSO Users

CLASS(class_name)

specifies the name or names of the output classes to be searched for output

from the jobs identified in the job name list. If you do not specify the name of a

class, all held output for the jobs are available. A class name is a single

character or digit (A-Z or 0-9).

PRINT(dsname | *)

specifies the name of the data set to which the output is to be directed. If

unqualified, the prefix is added to and the qualifier OUTLIST is appended to the

data set name. You can substitute an asterisk for the data set name to indicate

that the output is to be directed to your terminal. If you omit both the data set

name and the asterisk, the default value is the asterisk. PRINT is the default

value if you omit PRINT, DELETE, NEWCLASS, DEST, and HOLD/NOHOLD.

 If the PRINT data set is not pre-allocated, RECFM defaults to FBS, LRECL

defaults to 132, and the BLKSIZE defaults to 3036.

BEGIN | HERE | NEXT

BEGIN

indicates output operations for a data set are to start from the beginning of

the data set regardless of whether it has been checkpointed.

HERE

indicates output operations for a data set that has been checkpointed are to

be resumed at the approximate point of interruption. If the data set is not

checkpointed, it is processed from the beginning. If you omit HERE, BEGIN,

and NEXT, then HERE is the default.

NEXT

indicates output operations for a data set that has been previously

checkpointed are to be skipped. Processing resumes at the beginning of

non-checkpointed data sets.

CAUTION:

The checkpointed data sets that are skipped are deleted unless the KEEP

operand is specified.

PAUSE | NOPAUSE

PAUSE

indicates output operations are to pause after each SYSOUT data set is

listed to allow you to enter a SAVE or CONTINUE subcommand. Pressing

the Enter key after the pause causes normal processing to continue. This

operand can be overridden by the NOPAUSE operand of the CONTINUE

subcommand. If PAUSE is not specified, then NOPAUSE is the default.

NOPAUSE

indicates output operations are not to be interrupted. This operand can be

overridden by the PAUSE operand of the CONTINUE subcommand.

KEEP | NOKEEP

OUTPUT Command

Chapter 1. TSO/E commands and subcommands 213

KEEP

specifies the SYSOUT data set is to remain enqueued after printing (see

also HOLD and NOHOLD).

NOKEEP

specifies the SYSOUT data set is to be deleted after it is printed. If neither

KEEP nor NOKEEP is specified, then NOKEEP is the default.

HOLD | NOHOLD

HOLD

specifies the kept SYSOUT data set is to be held for later access from the

terminal.

Note: HOLD may be overridden if DEST(remote_station_id) specifies a

network job entry (NJE) node. For example,

TSO OUTPUT job DEST(DETROIT) HOLD

issued on a node in TAMPA will not hold the output.

For JES3 users, HOLD may also be overridden if NEWCLASS(class_name)

specifies a class defined on a JES3 SYSOUT initialization statement with a

default NJE networking node DEST. For example,

SYSOUT,CLASS=D,TYPE=PRINT,DEST=DETROIT

is included in the JES3 initialization stream.

TSO OUTPUT job NEWCLASS(D) HOLD

issued on a node in TAMPA will not hold the output.

Note to JES3 Users: To view the output, you must specify an output class

that has been defined as HOLD (for TSO/E) or

RSVD (reserved) on the DD statement. If you specify

RSVD class, then MSGCLASS and SYSOUT class

must be the same as the RSVD class. For more

information, see z/OS JES3 Initialization and Tuning

Guide.

NOHOLD

specifies the kept SYSOUT data set be released for printing by the

subsystem. NOHOLD is the default.

DELETE

specifies classes of output specified with the CLASS operand are to be deleted.

NEWCLASS(class_name)

is used to change one or more SYSOUT classes to the class specified by the

class_name subfield.

DEST(remote_station_id)

routes SYSOUT classes to a remote workstation specified by the station ID

subfield. The station ID is 1 to 8 characters in length.

Output sequence

Output is produced according to the sequence of the jobs that are specified, then

by the sequence of classes that are specified for the CLASS operand. For example,

assume that you want to retrieve the output of the following jobs:

OUTPUT Command

214 z/OS V1R9.0 TSO/E Command Reference

//JWSD581 JOB 91435,MSGCLASS=X

// EXEC PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=Y

//SYSUT1 DD DSNAME=PDS,UNIT=3330,

// VOL=SER=11112,LABEL=(,SUL),

// DISP=(OLD,KEEP),

// DCB=(RECFM=U,BLKSIZE=3036)

//SYSUT2 DD SYSOUT=Z

//SYSIN DD *

 PRINT TYPORG=PS,TOTCONV=XE

 LABELS DATA=NO

/*

//JWSD582 JOB 91435,MSGCLASS=X

// EXEC PGM=IEHPROGM

//SYSPRINT DD SYSOUT=Y

//DD2 DD UNIT=3330,VOL=SER=333000, DISP=OLD

// DISP=OLD

//SYSIN DD *

 SCRATCH VTOC,VOL=3330=333000

/*

To retrieve the output, you enter:

output (jwsd581 jwsd582) class (x y z)

Your output is displayed in the following order:

1. Output of job JWSD581

a. class X (JCL and messages)

b. class Y (SYSPRINT data)

c. class Z (SYSUT2 data)

2. Output of job JWSD582

a. class X (JCL and messages)

b. class Y (SYSPRINT data)

c. message (NO CLASS Z OUTPUT FOR JOB JWSD582)

If no classes are specified, the jobs are processed as entered. Class sequence is

not predictable.

Subcommands for the OUTPUT command

Subcommands for the OUTPUT command are: CONTINUE, END, HELP, and

SAVE. When output has been interrupted, you can use the CONTINUE

subcommand to resume output operations.

Interruptions causing subcommand mode occur when:

v Processing of a SYSOUT data set completes and the PAUSE operand was

specified with the OUTPUT command.

v You press the attention key.

Pressing the attention key purges the input/output buffers for the terminal. Data and

system messages in the buffers at this time may be lost.

Although the OUTPUT command attempts to back up 10 records to recover the lost

information, results are unpredictable due to record length and buffer size. You

might see records repeated or notice records missing if you attempt to resume

processing of a data set at the point of interruption (using the HERE operand of

CONTINUE, or in the next session, using HERE on the command).

OUTPUT Command

Chapter 1. TSO/E commands and subcommands 215

You can use the SAVE subcommand to copy a SYSOUT data set to another data

set for retrieval by a different method. Use the END subcommand to terminate

OUTPUT. The remaining portion of a job that has been interrupted is kept for later

retrieval at the terminal.

Checkpointed data set

A data set is checkpointed if it is interrupted during printing and never processed to

end-of-data during a terminal session.

Interruptions which cause a data set to be checkpointed occur when:

v Processing terminates in the middle of printing a data set because of an error or

abend condition.

v The attention key is pressed during the printing of a data set and the CONTINUE

NEXT subcommand is entered. The KEEP operand must be present or the data

set is deleted.

v The attention key is pressed during the printing of a data set and the END

subcommand is entered.

OUTPUT command return codes

 Table 28. OUTPUT command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

OUTPUT command examples

Example 1

Operation: Direct the held output from a job to your terminal. Skip any

checkpointed data sets.

Known:

v The name of the job: SMITH2

v The job is in the system output class: SYSOUT=X

v Output operations are to be resumed with the next SYSOUT data set or group of

system messages that have never been interrupted. You want the system to

pause after processing each output data set.
output smith2 class(x) print(*) next pause

Example 2

Operation: Direct the held output from two jobs to a data set so that it can be

saved and processed at a later date.

Known:

v The name of the jobs: JANA JANB

v The name for the output data set: JAN.AUGPP.OUTLIST
output (jana,janb) class(r,s,t) print(augpp)

Example 3

Operation: Change an output class.

Known:

v The name of the job: KEAN1

v The existing output class: SYSOUT=S

OUTPUT Command

216 z/OS V1R9.0 TSO/E Command Reference

v The new output class: T
output kean1 class(s) newclass(t)

Example 4

Operation: Delete the held output instead of changing the class (see “Example 3”

on page 216).

out kean1 class(s) delete

Example 5

Operation: Retrieve SYSOUT data from your session at your terminal.

Known:

v The TSO/E user ID: SMITH

v A JES held SYSOUT class: X

v The filename of the SYSOUT data set: SYSUT2
free file(sysut2) sysout(x)

status smith

SMITH(TSU0001) EXECUTING

output smith(tsu0001)

OUTPUT subcommands (overview)

The subcommands of the OUTPUT command are:

 Table 29. Subcommands and functions of the OUTPUT command

CONTINUE Resumes output operations that have been interrupted.

END Ends the OUTPUT command.

HELP Obtains the syntax and function of the OUTPUT subcommands.

SAVE Copies the SYSOUT data set from the spool to the named data set.

OUTPUT—CONTINUE subcommand

Use the CONTINUE subcommand to resume output operations that have been

interrupted.

Interruptions occur when:

v An output operation completes and the PAUSE operand was specified with the

OUTPUT command.

v You press the attention key.

OUTPUT—CONTINUE subcommand syntax

��

CONTINUE

C

 NEXT

BEGIN

HERE

PAUSE

NOPAUSE

��

OUTPUT—CONTINUE subcommand operands

BEGIN

indicates output operations are to be resumed from the beginning of the data

set being processed at the time of interruption.

OUTPUT Command

Chapter 1. TSO/E commands and subcommands 217

HERE

indicates output operations are to be resumed at a point of interruption. If the

attention key is pressed, processing resumes at the approximate point of

interruption in the current data set. If end- of-data is reached and PAUSE is

specified, processing resumes at the beginning of the next data set (even if it is

checkpointed and HERE is specified on the command).

NEXT

halts all processing of the current data set and specifies that output operations

are to be resumed with the next data set.

 The next data set is determined by the BEGIN, HERE, or NEXT operand on the

OUTPUT command. If BEGIN is specified on the command, processing starts

at the beginning of the next data set. If HERE is specified, processing starts at

the checkpoint of the next data set or at its beginning, if no checkpoint exists. If

NEXT is specified, processing starts at the beginning of the next

non-checkpointed data set. If BEGIN, HERE, and NEXT are omitted, then

NEXT is the default.

Note: The interrupted and skipped data set, or both are deleted unless you

specified KEEP on the OUTPUT command.

PAUSE

indicates output operations are to pause after each data set is processed to

allow you to enter a SAVE subcommand. Pressing the Enter key after the

pause causes normal processing to continue. You can use this operand to

override a previous NOPAUSE condition for output.

NOPAUSE

indicates output operations are not to be interrupted. You can use this operand

to override a previous condition for output.

OUTPUT—CONTINUE subcommand examples

Example 1

Operation: Continue output operation with the next SYSOUT data set.

continue

Example 2

Operation: Start output operations over again with the current data set being

processed.

continue begin

OUTPUT—END subcommand

Use the END subcommand to terminate the operation of the OUTPUT command.

OUTPUT—END subcommand syntax

�� END ��

OUTPUT—HELP subcommand

Use the HELP subcommand to obtain the syntax and function of the OUTPUT

subcommands. For a description of the HELP command syntax and function, see

the “HELP command” on page 154.

OUTPUT—CONTINUE Subcommand

218 z/OS V1R9.0 TSO/E Command Reference

OUTPUT—SAVE subcommand

Use the SAVE subcommand to copy the SYSOUT data set from the spool data set

to the named data set. If you use the data set with the PRINT operand, then it must

be a valid data set. There is no restriction against saving JCL. To use SAVE, you

should specify the PAUSE operand on the OUTPUT command. SAVE does not

save the entire SYSOUT output of the job, only the data set currently being

processed.

OUTPUT—SAVE subcommand syntax

�� SAVE

S
 data_set_name ��

OUTPUT—SAVE subcommand operand

data_set_name

specifies the new data set name to which the SYSOUT data set is to be copied.

OUTPUT—SAVE subcommand examples

Example 1

Operation: Save an output data set.

Known:

v The name of the data set: ADT023.NEWOUT.OUTLIST
save newout

Example 2

Operation: Save an output data set.

Known:

v The name of the data set: BXZ037A.OLDPART.OUTLIST

v The data set member name: MEM5

v The data set password: ZIP
save oldpart(mem5)/zip

PRINTDS command

Use the PRINTDS command to format and print data sets on any printer defined to

the Job Entry System (JES). PRINTDS allows you to:

v Print data sets that have the following characteristics:

– Sequential or partitioned (print the entire data set or selected members)

Different types of control characters cannot be mixed within a sequential data

set or in a PDS. However, different members of a PDS can contain different

types of control characters. For more information about control characters,

see “cchar” on page 223.

– Movable or unmovable

– Fixed or variable record format

– Logical record length not greater than 32,760.

– Resides on DASD

v Reference output descriptors.

v Format the data and either print it or copy it to a data set.

OUTPUT—SAVE Subcommand

Chapter 1. TSO/E commands and subcommands 219

v Print data sets that contain Document Composition Facility (DCF) data.

Note: Generation data group (GDG) data sets are not supported by PRINTDS.

There are three types of operands you can specify on the PRINTDS command:

v The name and characteristics of the data set(s) or file to be printed

v The formatting and output characteristic operands

v The OUTDES operand referring to a previous output descriptor.

Process for the input data set or file

Each data set you specify is processed as follows:

v If you specify a file, the data sets within the file concatenation are allocated and

printed separately. They are treated as if you had specified a list of data sets to

be printed. After the system prints the file, it does not deallocate the file.

v PRINTDS examines the first line of the data set to determine whether Document

Composition Facility (DCF) formatted the data in the data set. If so, the first line

is of the following form and PRINTDS extracts device and font information from

it. examines the first line of the data set and extracts the device and font

information from that line, such as:

SCRIPT/VS Rx.x.x; DEVICE device CHARS font1 (... font4)

If PRINTDS finds page mode data in the data set, the device and font

information will not be extracted.

PRINTDS associates the specified font information with the SYSOUT data set. If

you specify the CHARS operand on the PRINTDS command, the system uses

the values specified on the CHARS operand when it allocates the SYSOUT data

set rather than the values from the DCF data set.

Output for a data set or file

The system prints a data set or file using the formatting operands you specified. It

prints a title that contains the name of the data set and the page number on every

page, unless the NOTITLE operand is specified or defaulted.

If the output attributes of a member are different from the previous member, such

as a Document Composition Facility file, then the system prints it separately. If you

specify multiple input data sets or members with unlike attributes, then the system

creates more than one SYSOUT data set. If you specify more than one output

descriptor using the OUTDES operand, then the system also creates more than one

SYSOUT data set.

If you direct the output to a data set, the system does not allocate SYSOUT data

sets. The formatted output is placed in the data set specified on the TODATASET

operand. If the member or data set does not exist, PRINTDS creates it.

Introductory information about how to use the PRINTDS command is described in

z/OS TSO/E User’s Guide.

PRINTDS command syntax

��

PRINTDS

PR

�

DATASET

(

dsname

)

DSNAME

FILE

(file_name)

DDNAME

BIND

(columns)

LMARGIN

�

PRINTDS Command

220 z/OS V1R9.0 TSO/E Command Reference

�
BMARGIN(lines)

BURST

NOBURST

CCHAR

SINGLE

DOUBLE

TRIPLE

�

,

CHARS(

character_name

)

 �

�
CLASS

(output_class)

SYSOUT

 �

�

�

COLUMNS(start_1

)

:end_1

,start_2:end_2

 �

�

�

COPIES(nnn

)

,

,

(

group_value

)

DCF

NODCF

 �

�
DEST(

destination

)

destination.user_id

FCB(fcb_name)
 �

�
FLASH(overlay_name,

)

copies

FOLD

(width)

TRUNCATE

 �

�

FORMS(forms_name)

 NOHOLD

HOLD

LINES(line_1

)

:line_2

�

�
 ALL

MEMBERS

DIRECTORY

MODIFY(module_name

)

,trc

�

PRINTDS Command

Chapter 1. TSO/E commands and subcommands 221

�
 NONUM

NUM

(location,length)

SNUM

�

,

OUTDES(

output_descriptor_name

)

�

�
PAGELEN(lines)

TITLE

NOTITLE

TMARGIN(lines)
 �

�
TODATASET

(dsname)

TODSNAME

TRC

NOTRC

UCS(ucs_name)
 �

�
WRITER(external_writer_name)

 ��

PRINTDS command operands

DATASET(dsname) | DSNAME(dsname)

specifies either one or more data sets or members to be printed. If you do not

specify DATASET, DSNAME, FILE, or DDNAME, the system prompts you to

enter the name. The data set name must include the descriptive (rightmost)

qualifier and can contain a member name in parentheses.

 If the data set is password protected, suffix the data set name with a slash (/)

and the password.

 The data set must have a data set organization of PO or POU for partitioned or

partitioned unmovable, PS or PSU for sequential or sequential unmovable,

record formats of fixed or variable, and logical record length not greater than

32,760.

 Spanned records or records with track overflow are not supported. You can

specify up to 255 data sets.

 Either DATASET, or DSNAME, or FILE, or DDNAME is required. If you do not

specify FILE, DDNAME, DATASET, or DSNAME, the system prompts you to

enter the name.

FILE(file_name) | DDNAME(file_name)

specifies the name of the file to be printed. The data sets within the

concatenation are printed as if you had specified the DATASET operand

followed by the list of the data set names that make up the file.

 You cannot use the FILE operand to print a data set that is protected by a

READ password. Use the DATASET or DSNAME operand.

 Either FILE, or DDNAME, or DATASET, or DSNAME is required. If you do not

specify FILE, DDNAME, DATASET, or DSNAME, the system prompts you to

enter the name.

BIND(columns) | LMARGIN(columns)

specifies the number of columns that the output is to be shifted to the right.

PRINTDS Command

222 z/OS V1R9.0 TSO/E Command Reference

LMARGIN is an alias for BIND. You can specify between 0 to 255 columns. If

you print a partitioned data set, the BIND or LMARGIN value applies only when

members are printed. The system ignores the BIND value when the directory

portion of the partitioned data set is printed.

 Do not use LMARGIN with page mode data. An error occurs if LMARGIN is

specified with page mode data.

 BIND(0) is the default. A non-zero BIND value is mutually exclusive with the

DIRECTORY operand.

BMARGIN(lines)

specifies the number of blank lines to be left at the bottom of each printed

page. You can specify a minimum of 0 lines, and a maximum of 6 lines less

than the value specified or defaulted for the PAGELEN operand.

 BMARGIN(0) is the default. A non-zero BMARGIN value is mutually exclusive

with the CCHAR or DIRECTORY operand.

BURST | NOBURST

specifies whether 3800 output is to be bursted into separate sheets. BURST or

NOBURST is allowed only when you print data to a SYSOUT data set.

Therefore, you cannot specify BURST or NOBURST when you specify the

TODATASET operand.

NOBURST

specifies that the printed output is to be in continuous fanfold pages.

NOBURST

is the default for a SYSOUT data set.

CCHAR | SINGLE | DOUBLE | TRIPLE

CCHAR

specifies that ANSI or machine code spacing control characters existing in

the data set are to be used for inter-record spacing. If you specify CCHAR,

the system assumes the default of NOTITLE.

SINGLE

specifies that all non-blank lines from the input data set are to be printed

with single spacing.

DOUBLE

specifies that all non-blank lines from the input data set are to be printed

with double spacing.

TRIPLE

specifies that all non-blank lines from the input data set are to be printed

with triple spacing. If you specify SINGLE, DOUBLE, or TRIPLE, the system

ignores blank lines from the input data set.

 If you specify CCHAR, SINGLE, DOUBLE, or TRIPLE, the record format

recorded in the data set’s DSCB is not used to determine the carriage control

type in the input. Instead, the first character in the first record of each input data

set or member is examined to determine the type of carriage control. If it is a

valid machine carriage control character, then the entire data set or member is

assumed to have machine carriage control spacing. Otherwise, ANSI carriage

control spacing is assumed.

 If you do not specify CCHAR, SINGLE, DOUBLE, or TRIPLE, the record format

recorded in the data set’s DSCB indicates whether the data set contains

carriage control characters, and if so, the type.

PRINTDS Command

Chapter 1. TSO/E commands and subcommands 223

If you do not specify CCHAR, PRINTDS determines the type of data set (ANSI

or MCC) from the DSCB.

 If you specify CCHAR, PRINTDS checks if the data set contains a valid MCC

code. If it does not find a valid MCC, PRINTDS treats the data set as an ANSI

type data set.

 Do not specify SINGLE, DOUBLE, or TRIPLE for an input data set that contains

ANSI or machine carriage control characters because the inter-record spacing

for such a data set is under control of the carriage control characters within the

data set.

 If you use the COLUMNS, NUM, or SNUM operands with CCHAR, column 1

refers to the first character after the carriage control character. If you specify the

TRC operand, then column 1 is the first character after the table reference

character.

 Table 30 contains the valid machine printer carriage control characters.

 Table 30. Valid machine printer carriage control characters

Print line and then

act

Action Act immediately and do not

print

-- NOOP (Comment line, no print) X'03'

X'01' Print only (no space) --

X'09' Space 1 line X'0B'

X'11' Space 2 lines X'13'

X'19' Space 3 lines X'1B'

X'89' Skip to channel 1 X'8B'

X'91' Skip to channel 2 X'93'

X'99' Skip to channel 3 X'9B'

X'A1' Skip to channel 4 X'A3'

X'A9' Skip to channel 5 X'AB'

X'B1' Skip to channel 6 X'B3'

X'B9' Skip to channel 7 X'BB'

X'C1' Skip to channel 8 X'C3'

X'C9' Skip to channel 9 X'CB'

X'D1' Skip to channel 10 X'D3'

X'D9' Skip to channel 11 X'DB'

X'E1' Skip to channel 12 X'E3'

X'5A' Defines page mode line of data --

CHARS(character_name{,...})

specifies the name of the character arrangement table (font). You can specify

up to four fonts. Specify 1 to 4 alphabetic, numeric, or special characters #, $,

or @ for the font. If you specify CHARS, the system assumes the TRC

operand, not the default of NOTRC.

Note: To define a single font to be used to print a data set that contains no

TRC codes, specify CHARS. To prevent the system from interpreting the

first character of each printed line as a TRC code, also specify NOTRC.

PRINTDS Command

224 z/OS V1R9.0 TSO/E Command Reference

CLASS(output_class) | SYSOUT(output_class)

specifies the output class JES is to use for processing the specified data set.

Valid output classes are characters A-Z or 0-9. The default output class is A.

SYSOUT is an alias for CLASS.

COLUMNS(start_1[: end_1[,start_2: end_2,...]]

specifies the columns of the data set to printed. You can specify the columns as

pairs of numbers in the format start:end. If you do not specify end, the system

assumes the last column of the input as end. You can specify up to 32 column

pairs.

 If your input data set contains a carriage control character or a table reference

character (TRC), column 1 refers to the first character position after the carriage

control character or the table reference character.

COPIES(nnn[,(group_value,...)])

specifies the number of copies to be printed for the data set. The number of

copies, nnn, can range from 1 to 255, subject to an installation limit.

 If you specify group values, the system ignores the individual value, nnn, for the

3800 printer. The group values describe how the printed copies are to be

grouped (3800 printer only). Each group value specifies the number of copies of

each page that are to be grouped together. You can specify up to 8 group

values. For example, a group value of 3 causes the first page of a data set to

be printed three times before printing is started for the second page, which

might also be printed three times, and so forth.

 COPIES(1) is the default value for a SYSOUT data set.

DCF | NODCF

specifies whether the font information is to be extracted from the first line of a

DCF formatted data set. For example,

SCRIPT/VS Rx.x.x; DEVICE device CHARS font1 (... font4)

The system finds and uses the font information when the data set is printed. If it

is page mode data, the device and font information will not be extracted.

 NODCF specifies that the font information is not to be extracted from the data

set.

 If you specify DCF, the system assumes NOTITLE. If you specify DCF and the

data set is found to have been formatted by DCF, then machine carriage control

spacing is also assumed. However, if you specify DCF and the data set is not

formatted by DCF, the system ignores the DCF operand. DCF is the default for

a SYSOUT data set.

 If you specify DCF and the FILE operand, the first line of each data set within

the file concatenation is examined for the DCF information. The data sets

making up the file are processed as if you had specified a list of separate data

sets.

 If DCF is specified or defaulted and the first record of the data set indicates that

the data has been formatted by DCF for a 1403 printer, the system assumes

NOTRC unless you specified TRC. In all other cases, DCF data sets are

assumed to have been formatted with TRC characters unless you had explicitly

specified NOTRC.

Note: If you specify DCF, the input data set might not have been formatted by

the Document Composition Facility. PRINTDS checks only the first

PRINTDS Command

Chapter 1. TSO/E commands and subcommands 225

record to determine whether the data set should be processed as a DCF

data set. If you specify NODCF, PRINTDS does not check the data set.

DEST{destination | destination.user_id}

specifies the destination of a remote workstation or a user at a specific remote

workstation to which the output is routed for processing. You can specify from 1

to 8 characters for either destination or user_id.

 For information about the destination format systemname.printername, see

z/OS JES2 Initialization and Tuning Guide.

 Or, if you specified a default destination in the SYS1.UADS data set, the DEST

output descriptor overrides the destination in SYS1.UADS. See z/OS JES3

Initialization and Tuning Guide.

FCB(fcb_name)

specifies the name of the forms control buffer (FCB) image to be used for the

3211, 3203-5, 3262, 4248, 6262, or 3800 printers. The name of the FCB is a 1

to 4 alphanumeric character string consisting of the last characters of the

following:

v FCB2xxxx member for the channel attached line printers (3203, 3211, 3262,

4245. 4248, 6262) or printers supported by System Network Architecture

(SNA)

v FCB3xxxx member for the 3800 printer.

v FCB4xxx member for the 3262, 4248 or 6262 printer

Your installation supplies a default for the SYSOUT class or for the printers.

FLASH(overlay_name[,copies])

specifies the name of a forms overlay, which can be used by the 3800 Printing

Subsystem. The overlay is “flashed” on a form or other printed information over

each page of output. The forms overlay_name must be 1 to 4 alphabetic,

numeric, or special characters #, $, or @. Optionally, you can specify the

number of copies on which the overlay is to be printed. The count can range

from 0 to 255. To flash no copies, specify a count of zero.

FOLD(width) | TRUNCATE(width)

specifies the length of the printed line if the input line is longer than the output

line.

FOLD

specifies that width is the maximum length of the output line. Records that

are too long to be printed within that length are wrapped around onto

subsequent lines.

TRUNCATE

specifies that width is the maximum length of the output line. Records that

are too long to be printed within that length are truncated to fit on one line.

 If the input data set contains carriage control characters, the data being folded

or truncated begins after the carriage control character. If the input data set has

a table reference character, or a carriage control character and table reference

character, the data being folded or truncated begins after the table reference

character.

FORMS(forms_name)

specifies the name of the form on which the output is to be printed. Specify 1 to

4 alphabetic, numeric, or the special characters #, $, or @ for the forms name.

HOLD | NOHOLD

PRINTDS Command

226 z/OS V1R9.0 TSO/E Command Reference

HOLD

specifies whether the output is to be held in the JES held output queue.

NOHOLD specifies that the output be made available for printing

immediately.

NOHOLD

is the default for a SYSOUT data set.

LINES(line_number_1[: line_number_2])

specifies the range of lines to be printed, either in:

v Embedded line number fields using the NUM or SNUM operand, or

v Relative records using the NONUM operand.

If you specify the first line number value only, printing continues from that line to

the last line of the data set. Only lines with line number values within the

specified range are printed. For example, LINES(10:20) causes the 10th

through 20th lines of the data set to be printed. However, if the data set has at

least 10 lines, but fewer than 20 lines, all lines from the 10th to the end of the

data set are printed. If the data set has fewer than 10 lines, no lines are printed.

 The line number values you specify for LINES are used for each printed data

set. For example, LINES(1:10) prints the first 10 lines of every sequential data

set and member specified. It also prints the first 10 lines of each member for

every partitioned data set specified.

MEMBERS | DIRECTORY | ALL

specifies which portion of a partitioned data set is to be printed.

MEMBERS

specifies that the system is to print only the data contained in the members

of the indicated partitioned data set, without the directory. The system prints

the members in alphabetical order.

DIRECTORY

specifies that the system is to print only the directory.

ALL

specifies that the system is to print both the data contained in the members

and the directory. The members are printed first followed by the directory.

ALL is the default.

 If you specify MEMBERS, DIRECTORY, or ALL when printing a sequential data

set or a specific member of a partitioned data set, the system ignores these

operands. If you print a partitioned data set with the ALL operand, you can

specify certain operands that are normally not allowed when you specify

DIRECTORY. The following operands affect the formatting and printing of

members of partitioned data sets, but not the directory:

v BIND

v COLUMNS

v DCF or NODCF

v FOLD or TRUNCATE

v LINES

v NUM or SNUM or NONUM

v SINGLE or DOUBLE or TRIPLE

v BMARGIN

v TMARGIN

v NOTITLE

The output of each page of a partitioned data set directory contains the

following:

PRINTDS Command

Chapter 1. TSO/E commands and subcommands 227

v Two directory lines

v A blank line

v A directory header line

v Another blank line

v One or more lines of directory information.

Each directory page has at least 6 lines, unless the partitioned data set has no

members. If the partitioned data set has no members, only the directory title

lines and header line are printed.

 If you specify NOTITLE with the ALL operand, the members of the partitioned

data set and other sequential data sets are printed without title lines. However,

the directory portion of the partitioned data set is printed with the directory title

lines on each page.

MODIFY(module_name[,trc])

specifies the name of a copy modification module, which is loaded into the 3800

or 3900 Printing Subsystem. This module contains predefined data such as

legends, column headings, or blanks. The module specifies where and on which

copies the data is to be printed. Use the IEBIMAGE utility to define and store

the module in the SYS1.IMAGELIB system data set. Specify 1 to 4 alphabetic,

numeric, or the special characters #, $, or @ for the module_name.

 The table reference character (TRC) corresponds to the character set(s)

specified on the CHARS operand. Values are from 0 to 3.

NUM(location,length) | SNUM(location,length) | NONUM

specifies where line numbers are located in the data set and whether PRINTDS

is to print the line numbers.

NUM

indicates that the data set contains a line number field to be printed. The

location value is the column location of the beginning of the line number

field. The length value is the number of columns that the line number field

occupies. You can specify up to 8 for the length value. Both the location

value and the length value are required.

SNUM

indicates the data set contains a line number, but the line number is not to

be printed. The location value is the column location of the beginning of the

line number field. The length value is the number of columns that the line

number field occupies. You can specify up to 8 for the length value. Both

the location value and the length value are required.

 If you specify either NUM or SNUM, the line number field in each record of

the input data set must contain only valid decimal digits, 0 to 9. If the line

number field contains characters other than 0 to 9, printing of the data set

ends. If you are printing a list of data sets, printing continues with the next

data set. If you are printing members of a partitioned data set, printing

continues with the next member.

NONUM

indicates that PRINTDS is to treat records as though there are no

embedded line numbers. NONUM is the default.

 If the input data set records contain a carriage control character or table

reference character, the column location refers to the first character after

the carriage control character or table reference character.

PRINTDS Command

228 z/OS V1R9.0 TSO/E Command Reference

|
|
|
|
|
|

|
|

OUTDES(output_descriptor_name[, ...])

specifies a list of installation-defined output descriptors that were created by

OUTPUT JCL statements in the LOGON procedure or by the TSO/E OUTDES

command. The characteristics of each output descriptor are associated with a

SYSOUT data set. Specifying OUTDES eliminates the need to supply

information related to the printer or the type of printing to be done. You can

specify up to 128 output descriptors. Specify 1 to 8 alphanumeric characters for

the name. The first character must be alphabetic or one of the special

characters #, $, or @.

 If you specify operands with an output descriptor, such as BURST, CHARS,

COPIES, and DEST, you can override them by specifying the corresponding

operand with PRINTDS. For example, specify the following command:

PRINTDS DA(ABC) OUTDES(OUTPR1) NOBURST COPIES(1) DEST(NODEB.USR)

The COPIES, NOBURST, and DEST operands override the values specified on

the output descriptor.

 If you specified a default destination in the SYS1.UADS data set, the DEST

output descriptor overrides the destination in SYS1.UADS.

PAGELEN(lines)

specifies the number of lines to be printed on a page. The lines value must be

from 6 to 4095. The default value is 60. The PAGELEN value less the

TMARGIN and BMARGIN must be greater than or equal to 6:

 TMARGIN value

 �

 |

 |

PAGELEN value must be greater Must have 6 or more lines

than or equal to 6 |

 |

 |

 �

 BMARGIN value

Note: PAGELEN specifies the length of a printed page in terms of the number

of lines per logical page. The specified value does not override the

maximum lines per physical page that the printing program is using.

However, if the value specified is greater than the maximum lines per

physical page that the printing program is using, then any remainder

from the specified value will be printed on the next physical page until

the specified value is reached, which will end a physical page.

If you are printing a directory of a partitioned data set, the system uses the

number of lines specified in PAGELEN for each page of the directory. It ignores

the values specified for TMARGIN or BMARGIN. For more information about

printing a directory of a partitioned data set, see the description for the

DIRECTORY/MEMBERS/ALL operand.

TITLE | NOTITLE

specifies that a title, including the name of the data set is to be printed and the

page number is to appear on every page of the printed output. NOTITLE

specifies that the title is to be suppressed.

 TITLE is the default for data sets with no carriage control characters. NOTITLE

is the default for data sets with carriage control characters. If you specify the

CCHAR, TRC, and DCF operands, the default is also NOTITLE.

PRINTDS Command

Chapter 1. TSO/E commands and subcommands 229

You cannot specify NOTITLE with the DIRECTORY operand because directory

title lines are always printed on directory pages. If you specify NOTITLE to print

a partitioned data set with the ALL operand, no title lines appear when the

system prints each member. However, the directory pages continue to be

formatted with directory title lines to distinguish the directory from the members

of the data set.

 If you specify TITLE and the input data set contains carriage control characters,

the system ignores TITLE and uses NOTITLE to print the data set. However, if

a list of input data sets is being printed, the system uses TITLE to print

subsequent data sets that do not contain carriage control characters. For

example, suppose the data set SEPT87.REPORT is a pre-formatted report that

contains carriage control characters. The data set SEPT85.DATA does not

contain carriage control characters. If you specify the following command:

PRINTDS DA(’SEPT87.REPORT’ ’SEPT85.DATA’) TITLE

The system uses NOTITLE for the first data set because it assumes that any

title information has already been added to the formatted data set. However, the

system uses TITLE for the second data set.

TMARGIN(lines)

specifies the number of blank lines to be left at the top of each printed page.

You can specify a minimum of 0 lines, and a maximum of 6 lines less than the

value specified or defaulted for the PAGELEN operand.

 TMARGIN(0) is the default. A non-zero TMARGIN value is mutually exclusive

with the CCHAR or DIRECTORY operand.

TODATASET(dsname) | TODSNAME(dsname)

specifies the name of the data set into which the formatted input data is to be

copied. If you specify TODATASET or TODSNAME, a SYSOUT data set is not

created.

 If the specified data set does not exist, PRINTDS creates the data set.

Otherwise, PRINTDS uses the existing data set. If the specified output data set

already exists, the output from the PRINTDS command replaces any existing

data.

 If you specify TODATASET that already exists and the data set is not large

enough to hold all of the output, the system issues an error message to inform

you to preallocate the data set with more space and to reissue the PRINTDS

command.

TRC | NOTRC

specifies whether the data records contain table reference character (TRC)

codes. The codes identify the font to be used to print each record. A TRC code

immediately follows the carriage control character, if any. Its value corresponds

to one of the four fonts specified by CHARS. If you specify TRC, the system

assumes NOTITLE.

 NOTRC specifies that the data set does not contain TRC codes. NOTRC is the

default unless you specify CHARS or DCF. If you specify CHARS or DCF or

use the default of DCF and the data set is not formatted for the 1403 printer,

the system assumes TRC. On a 1403 printer, the system uses NOTRC.

 If you specify COLUMNS, NUM, or SNUM operands with TRC, column 1 refers

to the first character after the table reference character.

PRINTDS Command

230 z/OS V1R9.0 TSO/E Command Reference

UCS(universal_character_set_name)

specifies the alphanumeric value for the universal character set name. Specify

up to 4 characters. If you do not specify the CHARS operand, the system uses

the UCS as the default.

WRITER(external_writer_name)

specifies a name for use in processing or selecting a SYSOUT data set. If you

specify the external writer name, the output data set is written under the control

of that external writer rather than the control of JES2 or JES3. The writer name

can contain 1 to 8 alphabetic, numeric, or the special characters #, $, or @.

 For JES3, you can code the DEST=nodename parameter in the output

descriptor with the WRITER=name parameter. However, do not code

DEST=nodename.userid in the output descriptor with WRITER=name, because

WRITER=name will override the specification of DEST=nodename.userid.

Default values for PRINTDS

The following figure shows a summary of default values for the PRINTDS

command. SYSOUT operand defaults apply only when printing to a SYSOUT data

set.

Changing these default values for the PRINTDS command is discussed in z/OS

TSO/E Customization.

 Table 31. Summary of default values for the PRINTDS command

Operand SYSOUT only Default value Allowed values

BIND No 0 0 - 255

TMARGIN No 0 0 - 4094

BMARGIN No 0 0 - 4094

PAGELEN No 60 6 - 4095

CLASS or SYSOUT Yes A A - Z, 0 - 9

BURST or

NOBURST

Yes NOBURST BURST or NOBURST

COPIES Yes 1 1 - 255

HOLD or NOHOLD Yes NOHOLD HOLD or NOHOLD

MEMBERS or

DIRECTORY or ALL

No ALL MEMBERS or

DIRECTORY or ALL

NUM or SNUM or

NONUM

No NONUM NUM or SNUM or

NONUM

TITLE or NOTITLE No If possible, TITLE,

Otherwise, NOTITLE.

(See note later in this

section.)

TITLE or NOTITLE

Note: If you did not specify the CCHAR, DCF, or TRC operands and the data set

does not contain carriage control characters, the default is TITLE. Otherwise,

PRINTDS assumes NOTITLE. If NOTITLE is the default, PRINTDS does not

print title lines when printing a sequential data set or members of a

partitioned data set. However, the directory of the partitioned data set is

always printed with title lines, even when you specify NOTITLE.

PRINTDS Command

Chapter 1. TSO/E commands and subcommands 231

|
|
|
|

The destination value used for a SYSOUT data set can be defined by the following

statements:

v PRINTDS DEST keyword

v OUTDES DEST keyword (or output JCL in a TSO/E proc)

– OUTDES statement referenced is specified by the PRINTDS OUTDES

keyword

– Output JCL statements in a TSO/E proc can be used for a PRINTDS

SYSOUT data set if output JCL is an applicable default type

v Default destination (as specified by ACCOUNT DEST keyword) for the user in

SYS1.UADS

v For JES3 only, the SYSOUT initialization statement DEST keyword.

When JES processes the SYSOUT, it incorporates the information in the order

listed below.

1. PRINTDS DEST keyword is used if it is given. If no PRINTDS DEST keyword is

given, then check if the OUTPUT statement is applicable. The OUTDES

keyword on PRINTDS provides the OUTPUT statement.

2. DEST keyword in the OUTPUT statement is used if it is given. If no OUTPUT

DEST keyword is given, then check if SYS1.UADS has a default destination

defined (DEST keyword).

3. Default destination (DEST keyword) in SYS1.UADS is used if it is given. If there

is no default destination (DEST keyword) in SYS1.UADS then check the

SYSOUT CLASS for JES3 installation.

4. DEST keyword in SYSOUT CLASS is used for JES3 installation if the SYSOUT

CLASS for the PRINTDS contains the DEST keyword.

5. If none of the preceding applied, use JES defaults.

Mutually exclusive operands on PRINTDS

The following table shows the mutually exclusive operands on the PRINTDS

command:

 Table 32. Mutually exclusive operands on the PRINTDS command

You cannot specify

this operand with these operands:

CCHAR BMARGIN, DIRECTORY, PAGELEN, TITLE, TMARGIN

DCF DIRECTORY, SINGLE or DOUBLE or TRIPLE, TITLE, TODATASET

or TODSNAME

DIRECTORY BIND, BMARGIN, CCHAR or SINGLE or DOUBLE or TRIPLE,

COLUMNS, DCF or NODCF, FOLD or TRUNCATE, LINES, NUM or

SNUM or NONUM, NOTITLE, TMARGIN

TRC TITLE, TODATASET or TODSNAME

TODATASET or

TODSNAME

BURST or NOBURST, CHARS, CLASS, COPIES, DCF or NODCF,

DEST, FCB, FLASH, FORMS, HOLD or NOHOLD, MODIFY,

OUTDES, TRC or NOTRC, UCS, WRITER

SNUM COLUMNS

BMARGIN, TMARGIN, and BIND allow a minimum value of 0. Because specifying a

value of 0 for any of these operands is the same as not specifying them,

BMARGIN(0) and TMARGIN(0) are not considered to be mutually exclusive with

CCHAR or DIRECTORY. Likewise, BIND(0) is not mutually exclusive with

DIRECTORY. The system ignores the operands.

PRINTDS Command

232 z/OS V1R9.0 TSO/E Command Reference

PRINTDS command return codes

 Table 33. PRINTDS command return codes

0 Processing successful.

4 Processing completed, but a warning message has been issued.

8 The input, output, or SYSOUT data set can not be used.

12 An error occurred during the processing of the PRINTDS command.

16 The installation exit requested termination of the PRINTDS command.

PRINTDS command examples

Example 1

Operation: Print all the members of a partitioned data set, but not the directory.

Lines longer than 72 characters are to be folded onto more than one line.

Known:

v The name of the data set: JCL.CNTL
printds dsname(jcl.cntl) members fold(72)

Example 2

Operation: Send the first 250 lines of a sequential data set to a JES held output

queue.

Known:

v The name of the data set: NAMES.TEXT
printds dataset(names.text) lines(1:250) hold

Example 3

Operation: Print a member of a partitioned data set using an output descriptor that

is installation-defined.

Known:

v The name of the data set: FOIL.TEXT

v The name of the member: STATUS

v The name of the output descriptor: FOILOUT
printds da(foil.text(status)) outdes(foilout)

Example 4

Operation: Print a member of a partitioned data set that is also a Document

Composition Facility file using the fonts GT10 and GB10.

Known:

v The name of the data set: MEMO.TEXT

v The name of the member: NOTICE

v The first line in the member reads: SCRIPT/VS R2.0: DEVICE 3800N6 CHARS

GT10 GB10
printds ds(memo.text(notice))

Example 5

Operation: Print a member of a partitioned data set that is also a Document

Composition Facility file using the character arrangement tables GT12 and GT15.

Known:

PRINTDS Command

Chapter 1. TSO/E commands and subcommands 233

v The name of the data set: DOCUMENT.TEXT

v The name of the member: APPROVAL

v The first line in the member reads: SCRIPT/VS R2.0: DEVICE 3800N6 CHARS ST10

ST12

printds da(document.text(approval)) chars(gt12,gt15)

In the preceding example, the fonts GT12 and GT15 for the CHARS operand

override the DCF font names ST10 and ST12.

Example 6

Operation: Print the data sets concatenated to a file.

Known:

v The name of the file: SYSPROC
printds fi(sysproc)

The members of each of the three partitioned data sets are printed followed by the

data set directory. By using the FILE operand, you do not have to know the names

of the data sets. The system prints them as if you had specified something like the

following:

printds da(’sys1.tso.clist’,’tools.clist’,’my.clist’)

PROFILE command

Use the PROFILE command or the PROFILE subcommand of EDIT to establish,

change, or list your user profile. The information in your profile tells the system how

you want to use your terminal. You can:

v Define a character-deletion or line-deletion control character (on some terminals)

v Specify whether prompting is to occur

v Specify the frequency of prompting under the EDIT command

v Specify whether you want to accept messages from other terminal users

v Specify whether you want the opportunity to obtain additional information about

messages from a CLIST

v Specify whether you want message numbers for diagnostic messages displayed

at your terminal

v Specify primary and secondary languages to be used in displaying translated

information.

v Specify whether variables in the CLIST or authorized REXX variable pools can

use storage above the 16MB line.

The syntax and function of the PROFILE subcommand of EDIT is the same as that

of the PROFILE command.

Initially, a user profile is prepared for you when arrangements are made for you to

use the system. The authorized system programmer creates your user ID and your

user profile. The system programmer is restricted to defining the same user profile

for every user ID that the programmer creates. This typical user profile is defined

when a user profile table (UPT) is initialized to hexadecimal zeroes for any new

user ID. Thus, your initial user profile is made up of the default values of the

operands discussed under this command. The system defaults, shown in Table 34

on page 235, provide for the character-delete and the line-delete control characters,

depending upon what type of terminal is involved:

PRINTDS Command

234 z/OS V1R9.0 TSO/E Command Reference

Table 34. System defaults for control characters

TSO/E terminal

Character-delete

control character

Line-delete control

character

IBM 2741 Communication Terminal BS (backspace) ATTN (attention)

IBM 3270 Information Display System None None

IBM 3290 Information Panel None None

IBM 3767 Communication Terminal None None

IBM 3770 Data Communication System None None

If deletion characters, prompting, and message activity are not what you expect,

check your profile by displaying it with the LIST operand.

Change your profile by using the PROFILE command with the appropriate

operands. Only the characteristics that you specify explicitly by operands are

changed. Other characteristics remain unchanged. The new characteristics remain

valid from session to session. If PROFILE changes do not remain from session to

session, your installation might have a LOGON pre-prompt exit that is preventing

the saving of any changes in the UPT. Verify this with your system programmer.

If no operands are entered on the PROFILE command, the current user profile is

displayed.

PROFILE command syntax

�� PROFILE

PROF

RECOVER

NORECOVER

CHAR(

character

)

BS

NOCHAR

 �

�
LINE(

ATTN

)

character

CTLX

NOLINE

PROMPT

NOPROMPT

INTERCOM

NOINTERCOM

PAUSE

NOPAUSE

 �

�
MSGID

NOMSGID

MODE

NOMODE

LIST

PREFIX(dsname_prefix)

NOPREFIX

WTPMSG

NOWTPMSG

 �

�
PLANGUAGE(language)

SLANGUAGE(language)

VARSTORAGE(

LOW

)

HIGH

VARSTORAGE

 ��

PROFILE command operands

RECOVER | NORECOVER

RECOVER

specifies that you can use the recover option of the EDIT command.

5. Not supported with terminals that use VTAM.

PROFILE Command

Chapter 1. TSO/E commands and subcommands 235

Note: You must be able to allocate the two data sets named

userid.EDITUTL1 and userid.EDITUTL2, or have them pre-allocated

for you in order to use EDIT with your profile set to RECOVER. The

high-level qualifier for these two data set names can only be your

userid, which might not be the same as your dsname-prefix

(specified as a parameter of the PROFILE PREFIX command).

NORECOVER

specifies that you cannot use the recover option of the EDIT command.

This is the default value for your profile when the profile is created.

CHAR(character | BS) | NOCHAR

CHAR(character)

5

specifies the EBCDIC character that you want to use to tell the system to

delete the previous character entered. You should not specify a blank, tab,

comma, asterisk, or parentheses because these characters are used to

enter commands. You should not specify terminal-dependent characters,

which do not translate to a valid EBCDIC character.

 If you are running under Session Manager, the system ignores the EBCDIC

character.

Note: Do not use an alphabetic character as either a character-delete or a

line-delete character. If you do, you run the risk of not being able to

enter certain commands without accidentally deleting characters or

lines of data. For instance, if you specify R as a character-delete

character, each time you try to enter a PROFILE command the R in

PROFILE would delete the P that precedes it. Thus it would be

impossible to enter the PROFILE command as long as R is the

character-delete control character.

CHAR(BS)

5

specifies a backspace signals that the previous character entered should be

deleted. This is the default value when your user profile is created.

NOCHAR

5

specifies no control character is to be used for character deletion.

LINE(ATTN | character | CTLX) | NOLINE

LINE(ATTN)

5

specifies an attention interruption is to be interpreted as a line-deletion

control character. This is the default value when your user profile is created.

Note: If a not valid character- and line-delete control character, or both are

entered on the PROFILE command, an error message informs you

of which specific control character is not valid. The character or line

delete field in the user profile table is not changed. You can continue

to use the old character- or line-delete control characters.

LINE(character)

5

specifies a control character that you want to use to tell the system to

delete the current line. If you are running under Session Manager, the

system ignores the control character.

LINE(CTLX)

5

specifies the X and CCTRL keys (pressed together) on a Teletype terminal

are to be interpreted as a line-deletion control character. If you are

operating a Teletype terminal, LINE is the default value when your user

profile is created.

PROFILE Command

236 z/OS V1R9.0 TSO/E Command Reference

NOLINE

5

specifies no line-deletion control character (including ATTN) is recognized.

PROMPT | NOPROMPT

PROMPT

specifies that you want the system to prompt you for missing information.

This is the default value when your user profile is created.

NOPROMPT

specifies no prompting is to occur.

INTERCOM | NOINTERCOM

INTERCOM

specifies that you can receive messages from other terminal users. This is

the default value when your user profile is created.

NOINTERCOM

specifies that you do not want to receive messages from other users.

PAUSE | NOPAUSE

PAUSE

specifies that you want the opportunity to obtain additional information when

a message is issued at your terminal while a CLIST (see the EXEC

command) or an in-storage command list (created by using the STACK

macro) is executing. After a message that has additional levels of

information is issued, the system displays the word PAUSE and waits for

you to enter a question mark (?) or press the Enter key.

NOPAUSE

specifies that you do not want to be prompted for a question mark or Enter.

This is the default value when your user profile is created.

MSGID | NOMSGID

MSGID

specifies diagnostic messages are to include message identifiers.

NOMSGID

specifies diagnostic messages are not to include message identifiers. This

is the default value when your user profile is created.

MODE | NOMODE

MODE

specifies a mode message is requested at the completion of each

subcommand of EDIT.

NOMODE

specifies, when this mode is in effect, the mode message (E or EDIT) is to

be issued after a SAVE, RENUM, or RUN subcommand is issued and also

when changing from input to edit mode. Specifying PROFILE NOMODE

eliminates some of the edit mode messages. NOMODE has the same effect

in the background as it does in the foreground. Your profile can be changed

by using the PROFILE command with the appropriate operands. Only those

characteristics specifically denoted by the operands specified are changed.

All other characteristics remain unchanged.

LIST

specifies the characteristics of the terminal user’s profile be listed at the

terminal. If other operands are entered with LIST, the characteristics of the

user’s profile are changed first, and then the new profile is listed.

PROFILE Command

Chapter 1. TSO/E commands and subcommands 237

After a new user ID is created and before the character-delete and line-delete

control character, or both are changed, entering PROFILE LIST results in

CHAR(0) and LINE(0) being listed. This indicates the terminal defaults for

character-delete and line-delete control characters are used.

 Although you receive RECOVER/NORECOVER as an option for this operand,

you must be authorized to use the RECOVER options.

PREFIX(dsname_prefix) | NOPREFIX

PREFIX(dsname_prefix)

specifies a prefix that is to be appended to all non-fully-qualified data set

names. The prefix is composed of 1 to 7 alphanumeric characters and

begins with an alphabetic character or one of the special characters #, $, or

@.

NOPREFIX

specifies no prefixing of data set names by any qualifier is to be performed.

Note: For background processing, the default is the user ID.

WTPMSG | NOWTPMSG

WTPMSG

specifies that you want to receive all write-to-programmer messages at your

terminal. This means messages crated by the TTO macro with

ROUTCDE=11.

NOWTPMSG

specifies that you do not want to receive write-to-programmer messages.

This is the default value when your user profile is created.

PLANGUAGE(language)

specifies the primary language to be used in displaying translated information

(messages, help information, and the TRANSMIT full-screen panel). You can

specify either a 3-character language code or a symbolic language name

defined by your installation. If the language name contains one or more blanks,

you must enclose the name in quotation marks. See your system administrator

for a list of valid language codes and installation-defined language names.

SLANGUAGE(language)

specifies the secondary language to be used in displaying translated information

should the primary language fail. You can specify either a 3-character language

code or a symbolic language name defined by your installation. If the language

name contains one or more blanks, you must enclose the name in quotation

marks. See your system administrator for a list of valid language codes and

installation-defined language names.

VARSTORAGE

specifies the storage location to be used for CLIST variables or REXX

OUTTRAP variables containing output from authorized commands. A CLIST or

REXX exec uses the VARSTORAGE setting of the PROFILE command when

the exec starts. This setting then remains unchanged for the life of the CLIST or

REXX exec, even if the CLIST or REXX exec issues a new PROFILE command

with a different VARSTORAGE setting. The new setting will only apply when a

new CLIST or REXX exec begins.

VARSTORAGE (HIGH)

indicates that CLIST variables and REXX OUTTRAP variables containing

output from authorized commands invoked by REXX can be kept in storage

above the 16M line.

PROFILE Command

238 z/OS V1R9.0 TSO/E Command Reference

VARSTORAGE (LOW)

indicates that CLIST variables and REXX OUTTRAP variables containing

output from authorized commands invoked by REXX can only be kept in

storage below the 16M line. If you specify VARSTORAGE with no

operands, VARSTORAGE(LOW) is the default. This is the default value

when your user profile is created.

PROFILE language setting notes

If you change your language and then log off, the new language specified may not

be saved from session to session. This depends on how your installation defines

languages. See your system administrator for assistance.

PROFILE foreground/background processing differences

The following differences should be noted for foreground/background processing:

v Changes made while processing in the foreground are saved from session to

session.

v Changes made while processing in the background remain in effect for the

duration of the background session, and are not saved after the background

session. Your foreground profile is not altered by background processing.

See Table 35 for a guide to the initialization of the terminal monitor program (TMP)

in batch processing. The heading “RACF/Non-RACF Job Without User ID” means

RACF without user ID, without a UADS entry for the user ID, or without RACF.

 Table 35. UPT/PSCB initialization table in the background

TMP initialization in the background

User profile table (UPT) Protected step control block (PSCB)

RACF job with

USER ID

RACF/Non-RACF

job without USER

ID

RACF job with

USER ID RACF/Non-RACF job

without USER ID

USERFLD * ZERO PSCBUSER job user ID NULL (blanks)

(1) NO JCL

EDIT

RECOV

*$ NO RECOVER PSCBGPNM NULL NULL (blanks)

PROMPT *$ NO PROMPT OPERATOR * NOOPER

MSGID * MSGID ACCOUNT * ACCOUNT

(1) NO ACCOUNT

INTERCOM * NO INTERCOM JCL * JCL

PAUSE * NO PAUSE MOUNT * NO MOUNT

ATTN/LD * NOT ATTN ATTN/LD * NOT ATTN

MODEMSG * NO MODEMSG EDIT

RECOV

* NO RECOVER

WTPMSG * NO WTPMSG HOLDCLASS * NULL (zero)

CHAR DEL *$ ZERO SUBMIT

CLASS

* NULL (zero)

LINE DEL *$ ZERO SUBMIT

MSGCLASS

* NULL (zero)

PREFIX 1 *

2 job user ID

NULL (blanks)

(1) ***

SYSOUT CLASS * NULL (zero)

PLANGUAGE ** **

(1) ENU (English)

SYSOUT

DEST

* NULL (blanks)

SLANGUAGE ** **

(1) ENU (English)

CHAR DEL * NULL (zero)

PROFILE Command

Chapter 1. TSO/E commands and subcommands 239

Table 35. UPT/PSCB initialization table in the background (continued)

TMP initialization in the background

User profile table (UPT) Protected step control block (PSCB)

RACF job with

USER ID

RACF/Non-RACF

job without USER

ID

RACF job with

USER ID RACF/Non-RACF job

without USER ID

LINE DEL * NULL (zero)

REGION

SIZE

*/2 NULL (zero)

VARSTORAGE *$ LOW

* The value is taken from UADS entry profile. If the

UADS prefix is empty, the system uses the job user

ID.

*$ You can modify most of the preceding defaults in the

background by issuing the PROFILE command with

the appropriate operand/keyword. You cannot use the

PROFILE command to modify the attributes in the

background.

** This depends on how your installation defines

languages.

*** The value is set equal to the userid associated with

this address space unless that userid is greater than

seven characters in length. In that case, there is no

prefix. The search order for the userid is ACEEUSRI,

ASXBUSER, no prefix.

* The value is taken from the UADS entry profile.

(1) Setting as a result of using TSO/E Environment Service (IKJTSOEV)

PROFILE command return codes

 Table 36. PROFILE command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

PROFILE command examples

Example 1

Operation: Establish a complete user profile.

Known:

v The character that you want to use to tell the system to delete the previous

character: #

v The indicator that you want to use to tell the system to delete the current line:

ATTN.

v You want to be prompted.

v You do not want to receive messages from other terminals.

v You want to be able to get second-level messages while a CLIST is executing.

v You do not want diagnostic message identifiers.
profile char(#) line(attn) prompt nointercom pause nomsgid

PROFILE Command

240 z/OS V1R9.0 TSO/E Command Reference

Example 2

Operation: Suppose that you have established the user profile in Example 1. The

terminal that you are using now does not have a key to cause an attention interrupt.

You want to change the line-delete control character from ATTN to @ without

changing any other characteristics.

profile line(@)

Example 3

Operation: Establish and use a line-deletion character and a character-deletion

character.

Known:

v The line-deletion character: &

v The character-deletion character: !
profile line(&) char(!)

If you type:

now is the tiâ!bcg!;

and press the Enter key, you actually enter:

abc.

Example 4

Operation: Suppose that you want to receive TSO/E information in Japanese

instead of U.S. English.

Known:

v The installation-defined name for Japanese: JAPAN
profile planguage(japan)

Note: The Japanese language must be active on your system for this command to

work.

Example 5

Operation: Suppose that you want to receive TSO/E information in French should

the primary language fail.

Known:

v The 3-character language code for French: FRA
profile slanguage(fra)

Note: The French language must be active on your system for this command to

work.

PROTECT command

Use the PROTECT command to prevent unauthorized access to your non-VSAM

data set. Use the Access Method Services ALTER and DEFINE commands to

protect your VSAM data set. These commands are described in z/OS DFSMS

Access Method Services for Catalogs.

The PROTECT command establishes or changes:

v The passwords that must be specified to gain access to your data

v The type of access allowed.

PROFILE Command

Chapter 1. TSO/E commands and subcommands 241

Data sets that have been allocated (either during a LOGON procedure or by the

ALLOCATE command) cannot be protected by specifying the PROTECT command.

To password protect an allocated data set, you need to deallocate it first using the

FREE command and then protect it using the PROTECT command.

Note that the PROTECT command does not support dynamic unit control blocks

(dynamic UCBs). If the device that holds the data set to be protected has been

dynamically reconfigured in your system, you will receive a message explaining that

the required volume is not mounted. Instead of using the PROTECT command to

control data set access the use of RACF should be considered. For more

information about RACF protection, see z/OS DFSMSdfp Advanced Services.

The data set password protection that the PROTECT command provides is much

weaker than the protection provided by RACF. Many of the reasons for that are

stated in the data set password section in z/OS DFSMSdfp Advanced Services.

PROTECT command syntax

�� PROTECT

PROT
 data_set_name/control_password �

�
 ADD(password_2)

REPLACE(password_1,password_2)

DELETE(password_1)

LIST(password_1)

PWREAD

NOPWREAD

PWWRITE

NOWRITE

�

�
DATA('string')

 ��

PROTECT command operands

data_set_name

specifies the name of the data set you want to protect. If the data set is not

cataloged, you must specify the fully-qualified name. For example:

protect ’userid.dsn.qual’ list(password)

control_password

Required on all operands except the LIST operand. It provides the control for

authorized personnel to alter the password structure on the PROTECT

command. See “Password data set” on page 244 for additional information.

ADD | REPLACE | DELETE | LIST

ADD(password_2)

specifies a new password is to be required for access to the named data

set. ADD is the default.

 If the data set exists and is not already protected by a password, its

security counter is set and the assigned password is flagged as the control

password for the data set. The security counter is not affected when

additional passwords are entered.

REPLACE(password_1, password_2)

specifies that you want to replace an existing password, access type, or

PROTECT Command

242 z/OS V1R9.0 TSO/E Command Reference

optional security information. The first value (password_1) is the existing

password; the second value (password_2) is the new password.

DELETE(password_1)

specifies that you want to delete an existing password, access type, or

optional security information.

 If the entry being removed is the control password (see the discussion

following these operand descriptions), all other entries for the data set are

also removed.

LIST(password_1)

specifies that you want the security counter, the access type, and any

optional security information in the password data set entry to be displayed

at your terminal.

password_1

specifies the existing password that you want to replace, delete, or have its

security information listed.

password_2

specifies the new password that you want to add or to replace an existing

password.

PWREAD | NOPWREAD

PWREAD

specifies the password must be given before the data set can be read.

NOPWREAD

specifies the data set can be read without using a password.

PWWRITE | NOWRITE

PWWRITE

specifies the password must be given before the data set can be written to.

NOWRITE

specifies the data set cannot be written to.

DATA(‘string’)

specifies optional security information to be retained in the system. The value

that you supply for string specifies the optional security information that is to be

included in the password data set entry (up to 77 bytes).

Passwords

You can assign one or more passwords to a data set. When assigned, the

password for a data set must be specified to access the data set. A password

consists of 1 to 8 alphanumeric characters. You are allowed two attempts to supply

a correct password.

Types of access

Four operands determine the type of access allowed for your data set: PWREAD,

PWWRITE, NOPWREAD, NOWRITE.

Each operand, when used alone, defaults to one of the preceding types of access.

The default values for each operand used alone are:

PROTECT Command

Chapter 1. TSO/E commands and subcommands 243

OPERAND DEFAULT VALUE

PWREAD PWREAD PWWRITE

NOPWREAD NOPWREAD PWWRITE

PWWRITE NOPWREAD PWWRITE

NOWRITE PWREAD NOWRITE

A combination of NOPWREAD and NOWRITE is not supported and defaults to

NOPWREAD and PWWRITE.

If you specify a password, but do not specify a type of access, the default is:

v NOPWREAD PWWRITE, if the data set does not have any existing access

restrictions

v The existing type of access, if a type of access has already been established

When you specify the REPLACE function of the PROTECT command, the default

type of access is that of the entry being replaced.

Password data set

Before you can use the PROTECT command, a password data set must reside on

the system residence volume. The password data set contains passwords and

security information for protected data sets. You can use the PROTECT command

to display this information about your data sets at your terminal.

The password data set contains a security counter for each protected data set. This

counter keeps a record of the number of times an entry has been referred to. The

counter is set to zero at the time an entry is placed into the data set, and is

increased each time the entry is accessed.

Each password is stored as part of an entry in the password data set. The first

entry in the password data set for each protected data set is called the control

entry. The password from the control entry must be specified for each access of the

data set by using the PROTECT command. However, the LIST operand of the

PROTECT command does not require the password from the control entry.

If you omit a required password when using the PROTECT command, the system

prompts you for it. If your terminal is equipped with the print-inhibit feature, the

system disengages the printing mechanism at your terminal while you enter the

password in response. However, the print-inhibit feature is not used if the prompting

is for a new password.

PROTECT command return codes

 Table 37. PROTECT command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

PROTECT command examples

Example 1

Operation: Establish a password for a new data set.

Known:

PROTECT Command

244 z/OS V1R9.0 TSO/E Command Reference

v The name of the data set: ROBID.SALES.DATA

v The password: L82GRIFN

v The type of access allowed: PWREAD PWWRITE

v The logon id was: ROBID
protect sales.data pwread add(l82grifn)

Example 2

Operation: Replace an existing password without changing the existing access

type.

Known:

v The name of the data set: ROBID.NETSALES.DATA

v The existing password: MTG@AOP

v The new password: PAO$TMG

v The control password: ELHAVJ

v The logon id was: ROBID
prot netsales.data/elhavj replace(mtg@aop,pao$tmg)

Example 3

Operation: Delete one of several passwords.

Known:

v The name of the data set: ROBID.NETGROSS.ASM

v The password: LETGO

v The control password: APPLE

v The logon id was: ROBID
prot netgross.asm/apple delete(letgo)

Example 4

Operation: Obtain a listing of the security information for a protected data set.

Known:

v The name of the data set: ROBID.BILLS.CNTRLA

v The password required: D#JPJAM
protect ’robid.bills.cntrla’ list(d#jpjam)

Example 5

Operation: Change the type of access allowed for a data set.

Known:

v The name of the data set: ROBID.PROJCTN.LOAD

v The new type of access: NOPWREAD PWWRITE

v The existing password: DDAY6/6

v The control password: EEYORE

v The logon id was: ROBID
protect projctn.load/eeyore replace(dday6/6)-

nopwread pwwrite

RECEIVE command

Use the RECEIVE command to retrieve transmitted files and to restore them to their

original format.

PROTECT Command

Chapter 1. TSO/E commands and subcommands 245

RECEIVE command syntax

�� RECEIVE

USERID(user_id)

INDDNAME

(ddname)

INFILE

INDSNAME

(dsname)

INDATASET

 �

�

PARM(parameter_string)

LOGDATASET

(dsn)

LOGDSNAME

 DISPLAY

NODISPLAY

�

�
 NAMES

NONAMES

��

RECEIVE command operands

USERID(user_id)

allows you to receive data for a user ID other than your own. The USERID

operand is limited to users with OPERATOR authority and to those who are

authorized through the RECEIVE initialization exit (INMRZ01). The user ID

might exist in SYS1.UADS at the target node or might be a non-existent user

ID.

INDDNAME(ddname) | INFILE(ddname)

specifies the use of a preallocated file as the input data set to receive the

transmitted data. Define the data set with RECFM=F, FB, V, VB, or U. For F

and FB, LRECL=80. The remaining DCB attributes are installation dependent.

 Specify the data set as either sequential or partitioned, but it must be the same

as that specified for OUTDDNAME or OUTFILE of the TRANSMIT command.

INDDNAME and INFILE are primarily intended for system programmer use.

INDSNAME(dsname) | INDATASET(dsname)

specifies the use of a sequential data set as the input data set to receive the

transmitted data. Define the data set with RECFM=F, FB, V, VB, or U. For F

and FB, LRECL=80. The remaining DCB attributes are installation dependent.

 If you specify INDATASET or INDSNAME with RECEIVE, the transmitted data is

not logged and no acknowledgment is sent to the originator. If you do not

specify INDATASET, the transmitted data is logged into the log entry and an

acknowledgment is sent to the originator.

 Use INDSNAME and INDATASET in combination with OUTDSNAME and

OUTDATASET operands of the TRANSMIT command. INDSNAME and

INDATASET are primarily intended for system programmer use.

PARM(parameter_string)

You can be instructed by your installation to use this operand to specify

installation dependent data.

LOGDATASET(dsname) | LOGDSNAME(dsname)

specifies an alternate name of a sequential data set used to log the transmitted

data. RECEIVE checks if the data set, specified by the LOGDATASET/
LOGDSNAME operand, is a sequential data set. However, RECEIVE does not

RECEIVE Command

246 z/OS V1R9.0 TSO/E Command Reference

check whether the data set attributes are RECFM=VB, LRECL=255, and

BLKSIZE=3120. If the data set does not exist, the system creates it.

 If you specify NONAMES with LOGDATASET or LOGDSNAME, the system

does not search the NAMES data set.

DISPLAY | NODISPLAY

DISPLAY

specifies that the transmitted data or message is to be displayed at the

terminal. The system normally displays the data or messages that are

transmitted according toone of the following operands of the TRANSMIT

command:

v MSGDATASET or MSGDSNAME

v MSGDDNAME or MSGFILE

v MESSAGE or MSG

v TERMINAL

The system places the message or name of the transmitted data set in the

log data set. DISPLAY is the default.

NODISPLAY

specifies that the transmitted data or message is not to be displayed at the

terminal. The system normally displays the data or messages that are

transmitted according to one of the following operands of the TRANSMIT

command:

v MSGDATASET or MSGDSNAME

v MSGDDNAME or MSGFILE

v MESSAGE or MSG

v TERMINAL

The system places the data or message in the log data set.

NAMES | NONAMES

NAMES

specifies that RECEIVE search and resolve the NAMES data set for a

matching node and user ID of the user who transmitted the data or

message. If the nickname and name of the user are found, RECEIVE

places the nickname, name, user ID, and node into the log data set.

 If the nickname and name are not found, RECEIVE places only the user ID

and node into the log data set. All other NAMES data set processing

remains the same. For more information about the NAMES data set, see

“NAMES data set function” on page 350 under the TRANSMIT command.

NAMES is the default.

NONAMES

specifies that the nickname and name of the user who transmitted the data

or message are not to be resolved. RECEIVE places only the node and

user ID in the log data set. All other NAMES data set processing remain the

same. For more information about the NAMES data set, see “NAMES data

set function” on page 350 under the TRANSMIT command.

 If you specify NONAMES with LOGDATASET or LOGDSNAME, the system

does not process the NAMES data set.

RECEIVE command prompt parameters

After describing each file, the RECEIVE command prompts for overriding

parameters. These parameters are all optional and control the restoring of the data

RECEIVE Command

Chapter 1. TSO/E commands and subcommands 247

set. Parameters not specified are allowed to default or are taken from information

transmitted with the data. The optional parameters are shown below.

RECEIVE command prompt parameter syntax

��

DATASET

(dsn)

DSNAME

UNIT(unit_name)

VOLUME(volser)
 �

�

SPACE(primary

)

,secondary

 TRACKS

CYLINDERS

BLOCKS(size)

RELEASE

�

�
DIRECTORY(blocks)

BLKSIZE(size)

NEW

OLD

MOD

SHR

 �

�

PARM(parameter_string)

SYSOUT(

*

)

sysout_class

 NOPREVIEW

PREVIEW

�

�
 RESTORE

RESTORE(LOG)

DELETE

END

COPY

MGMTCLAS(management_class_name)

�

�
STORCLAS(storage_class_name)

 ��

RECEIVE command prompt parameters

Default values for other keywords are specified with the keyword below.

DATASET(dsname)|DSNAME(dsname)

specifies the name of the data set to be used to contain the received data set.

If it does not exist already, the system creates it.

 If DATASET and DSNAME are omitted, then RECEIVE uses the name of the

transmitted data set, with the high-level qualifier changed to the user ID of the

receiving user. If this data set already exists, is a sequential data set, and

disposition (SHR/MOD/OLD/NEW) was not specified, RECEIVE prompts you for

permission to overwrite the data set. If the data set is partitioned, you are

prompted to replace duplicate members.

UNIT(unit_name)

specifies a unit name for a new output data set. The default value for UNIT is

your normal TSO/E unit name.

VOLUME(volser)

specifies a specific volume serial number for a new output data set. The default

value for VOLUME is no value, allowing the system to select a volume from

those defined by your unit name specified on the UNIT keyword.

RECEIVE Command

248 z/OS V1R9.0 TSO/E Command Reference

SPACE(primary,secondary)

specifies primary and secondary space for the received data set. The default

value for SPACE is a primary size equal to the size of the incoming data and a

secondary size of approximately 25 percent of the primary. If the disposition

MOD is used, and the data set is not yet allocated, the system defaults are

used to obtain the SPACE parameter defaults.

TRACKS

specifies space to be allocated in tracks. TRACKS is the default when SPACE

is specified.

CYLINDERS

specifies space to be allocated in cylinders.

BLOCKS(size)

specifies space to be allocated in blocks of the specified size. BLOCKS is the

default when SPACE is not specified.

RELEASE

specifies unused space to be released when the receive operation is complete.

DIRECTORY(blocks)

specifies an override for the number of directory blocks in a partitioned data set.

The default value for DIRECTORY is the number of directory blocks required for

the received members.

 If a sequential data set is being received into a new PDS by specifying

DA(X(MEM)) and DIRECTORY is not specified, the default value for directory

blocks is 27.

BLKSIZE(size)

specifies a value for the block size of the output data set. This value is used, if

it does not conflict with the received data set parameters or device

characteristics. BLKSIZE is ignored if specified in response to prompting

message INMR907A Enter COPY parameters.

NEW | OLD | MOD | SHR

specifies the data set disposition. If you do not specify one of the disposition

keywords and the SPACE value is not present, RECEIVE first tries disposition

OLD and attempts to allocate an existing data set. If this fails, disposition NEW

is used, space values are added, and another attempt is made at allocation.

PARM(parameter string)

Your installation may instruct you to use this operand to specify installation

dependent data.

SYSOUT(sysout_class | *)

specifies a SYSOUT class to be used for messages from utility programs the

RECEIVE command invokes (such as IEBCOPY). If * is specified, these

messages are directed to the terminal. The default for SYSOUT is normally *,

but this might be changed by the installation.

PREVIEW | NOPREVIEW

PREVIEW

specifies the received data should be displayed at the terminal as it is

stored. This is generally appropriate only for sequential data sets because

what is displayed is the result of the first pass at restoring the data. For

partitioned data sets, the IEBCOPY unloaded format is displayed.

NOPREVIEW

specifies no previewing is to be done. NOPREVIEW is the default.

RECEIVE Command

Chapter 1. TSO/E commands and subcommands 249

RESTORE | RESTORE(LOG) | DELETE | END

RESTORE

specifies the transmitted data should be restored to its original format.

RESTORE is the default.

RESTORE(LOG)

specifies the transmitted data should be restored to its original format and

written to the appropriate log. It is also previewed to the terminal, but it is

not written to another data set. You cannot specify RESTORE(LOG) with

the DATASET or DSNAME operand. You need to use RESTORE(LOG)

primarily to RECEIVE a message and log the message text in the log entry.

DELETE

specifies the file be deleted without restoring it.

END

specifies the RECEIVE command terminate immediately, leaving the current

data set on the spool to be reprocessed at a later time.

COPY

specifies not to restore the transmitted data to its original format, but copy it ‘as

is’. At a later time you can specify RECEIVE INDATASET to restore the data.

COPY allows you to examine the data in its transmitted form so that you can

debug problems when RECEIVE cannot process the transmitted data. It is

primarily intended for system programmer use.

MGMTCLAS(management_class_name)

With Storage Management Subsystem (meaning Storage Management

Subsystem is installed and is active), specifies the name, 1 to 8 characters, of

the management class for a new data set. When possible, do not specify

MGMTCLAS. Instead, use the default your storage administrator provides

through the automatic class selection (ACS) routines.

 After the data set is allocated, attributes in the management class control the

following:

v The migration of the data set, which includes migration from primary storage

to Data Facility Hierarchical Storage Manager (DFHSM) owned storage to

archival storage.

v The backup of the data set, which includes frequency of backup, number of

versions, and retention criteria for backup versions.

Note: Without Storage Management Subsystem, the system syntax checks and

then ignores the MGMTCLAS operand.

STORCLAS(storage_class_name)

with Storage Management Subsystem, specifies the name, 1 to 8 characters, of

the storage class. When possible, do not specify STORCLAS. Instead, use the

default your storage administrator provides through the automatic class

selection (ACS) routines.

 The storage class replaces the storage attributes that are specified on the UNIT

and VOLUME operand for non-Storage Management Subsystem managed data

sets.

 A “Storage Management Subsystem-managed data set” is defined as a data set

that has a storage class assigned. A storage class is assigned when you

specify STORCLAS or an installation-written ACS routine selects a storage

class for the new data set.

RECEIVE Command

250 z/OS V1R9.0 TSO/E Command Reference

Note: Without Storage Management Subsystem, the system syntax checks and

then ignores the STORCLAS operand.

RECEIVE command return codes

 Table 38. RECEIVE command return codes

0 Processing successful.

4 Processing successful, but a warning message has been issued.

8 Processing incomplete. Some function failed.

12 Processing ends, but is not successful.

16 Processing abnormally terminates.

Receiving data

The RECEIVE command picks the first file that has been transmitted to you,

displays descriptive information about the file, and prompts you for information to

control the restore operation. You can choose to accept the default data set name

(the original data set name with the high-level qualifier changed to the receiving

user’s TSO/E prefix) and space information or you can override any of these

defaults. RECEIVE creates the data set if it does not exist. You can specify a

disposition (OLD, SHR, MOD, or NEW) to force a particular mode of operation. If

the data set is successfully restored, RECEIVE continues with the next file. If

requested by the sender, RECEIVE generates a notification of receipt and transmits

it back to the sender. This return message contains routing and origin information,

the name of the data set transmitted, the original transmission sequence number,

and an indication of whether the receive was successful. If an error occurred, the

message number of the error is included.

You can also use RECEIVE to retrieve Office Vision notes. However, an

acknowledgment is not transmitted to the sender of the Office Vision note. Receipt

notification is the default for any addressee entered individually on the TRANSMIT

command, but not for addressees derived from distribution lists. If you want to be

notified for addressees on distribution lists, you must specify :NOTIFY on the

distribution list in the control data set or specify NOTIFY(ALL) on the TRANSMIT

command.

You can use the RECEIVE command to receive network data (data that was not

sent by the TRANSMIT command). The default LRECL for network data is 251

bytes. If you need to receive network data with an LRECL greater than 251 bytes,

you must use a data set with an LRECL greater than 251 bytes.

Data set organization

Generally, RECEIVE cannot reformat data sets. The data set into which received

data is to be written must have the same record format as the original data set. The

record length must be compatible. That is, equal for fixed-length records and equal

or longer for variable-length records. The block size of the received data set can be

any value that is compatible with the record length and record format. If a mismatch

is found in record length, block size, or record format, RECEIVE terminates with

appropriate error messages and return codes.

You can receive sequential or partitioned data sets with record formats of F, FS, FB,

FBS, V, VB, and U. The largest fixed-length record data set TSO/E can receive

from VM is 32,760. Data sets with machine and ASA print-control characters are

RECEIVE Command

Chapter 1. TSO/E commands and subcommands 251

also supported. RECEIVE does not support data sets with keys, ISAM data sets,

VSAM data sets, or data sets with user labels.

Receiving PDSE data sets

RECEIVE supports PDSE Data Libraries and PDSE Program Libraries. Depending

on the user’s specifications and on the level of MVS/DFP or DFSMS, conversion

between PDSEs and PDSs, and PDSs and PDSEs, are performed implicitly.

Program Objects which are executable programs stored as members of a PDSE

Program Library, are subject to some restrictions when conversions to other data

set types are attempted. When executing the TRANSMIT and RECEIVE commands,

these restrictions prevent invalid Program Objects from being accepted.

When a PDS or PDSE is sent with the TRANSMIT command, the IEBCOPY utility

first copies the data set to an intermediate sequential file. Control information is

added and the data set is sent. When it is received, the control information is used

to determine the characteristics of the original data set so that a new data set can

be allocated with the proper size and of the same type. IEBCOPY is then used to

reload the PDS or PDSE. Since there are restrictions when receiving Program

Objects, the receiving terminal user gets assistance by means of a message about

the data set characteristics of the incoming file. The user is then asked to enter the

restore parameters.

The figure later in this section shows all combinations of source and target data

sets and how they are handled by TRANSMIT and RECEIVE.

 Table 39. Combinations of source and target data sets

TARGET

Output data

set

Output data

set

Output data

set

Output data

set

No output data set specified

SOURCE Sequential

File

PDS Data Library Program

Library

PDSE is fully

supported

Only Data

Library is

supported

PDSE is not

supported

Sequential

File

Sequential

File

PDS

member

Data Library

member

INMR155I Sequential

File

Sequential

File

Sequential

File

PDS Sequential

File *

PDS Data Library INMR156I PDS PDS PDS

Data Library Sequential

File *

PDS Data Library INMR157I Data Library Data Library PDS

Program

Library

INMR158I INMR158I INMR158I Program

Library

Program

Library

INMR159I INMR159I

* PDS member or Data Library member was transmitted with the SEQ option.

INMR15xI is the error message number resulting from the user request.

Receiving protected data sets

RECEIVE warns you if you are receiving a data set that was RACF or PASSWORD

protected. It takes no further action to protect newly restored data. If you are using

the automatic data set protection feature of RACF or a RACF generic profile, the

data set is protected. Otherwise, use the PROTECT command or the RACF

ADDSD command to protect the data.

RECEIVE Command

252 z/OS V1R9.0 TSO/E Command Reference

Receiving enciphered data

If RECEIVE detects that TRANSMIT enciphered the incoming file, it automatically

attempts to decipher the data. To do this, it prompts you for decipher options and

then passes these to the Access Method Services REPRO command. See “Data

encryption function of TRANSMIT and RECEIVE” on page 348.

The RECEIVE command logs transmissions. See “Logging function of TRANSMIT

and RECEIVE” on page 349.

Receiving data sets and messages with security labels

If your installation uses security labels and security options, any data sets or

messages transmitted to you have a security label associated with them. In order

for you to receive the data, you must be logged on at a security label equal to or

greater than the security label with which the data was transmitted.

Some considerations for receiving data sets and messages with security labels are:

v You can only receive data sets and messages you are authorized to receive

based on the security label you are logged on with.

v To receive data sets and messages with a greater security label, you can log on

with a greater security label if your TSO/E user ID is authorized to do so. Then

you can use the RECEIVE command to view the messages and data sets.

v If you cannot log on with a security label that allows you to receive the data set

or message, the system deletes the data, unless your installation uses a JES

installation exit to take some other action.

v You do not receive a notice that you have data sets or messages to receive if

they were transmitted with a security label that is greater than the security label

with which you are logged on.

RECEIVE command examples

In the following examples, the transmitting user is assumed to have user ID USER1

on node NODEA and the receiving user is assumed to have user ID USER2 on

node NODEB. The sending user has a NAMES data set as follows:

* Control section

:altctl.DEPT.TRANSMIT.CNTL

:prolog.Greetings from John Doe.

:prolog.

:epilog.

:epilog.Yours,:epilog.John Doe :epilog.NODEA.USER1

*

* Nicknames section.

*

:nick.alamo :list.Jim Davy :logname.alamo :notify.

:nick.addrchg :list.joe davy jim :nolog :nonotify

:nick.Joe :node.nodeb :userid.user2 :name.Joe Doe

:nick.Me :node.nodea :userid.user1 :name.me

:nick.Davy :node.alamo :userid.CROCKETT :name.Davy Crockett

:nick.Jim :node.ALAMO :userid.Bowie :name.Jim Bowie

In the examples involving the RECEIVE command, data entered by the user

appears in lowercase and data displayed by the system is in uppercase.

Example 1

Transmit a copy of the ‘SYS1.PARMLIB’ data set to Joe, identifying Joe by his node

and user ID.

transmit nodeb.user2 da(’sys1.parmlib’)

RECEIVE Command

Chapter 1. TSO/E commands and subcommands 253

Example 2

Joe receives the copy of ‘SYS1.PARMLIB’ transmitted above.

receive

Dataset SYS1.PARMLIB from USER1 on NODEA

Enter restore parameters or ’DELETE’ or ’END’ +

<null line>

Restore successful to dataset ’USER2.PARMLIB’

No more files remain for the RECEIVE command to process.

In the preceding example, Joe has issued the RECEIVE command, seen the

identification of what arrived, and chosen to accept the default data set name for

the arriving file. The default name is the original data set name with the high-level

qualifier replaced by his user ID.

Example 3

Transmit two members of ‘SYS1.PARMLIB’ to Joe, and add a message identifying

what was sent. Joe is identified by his NICKNAME, leaving it to TRANSMIT to

convert it into node and user ID by the nicknames section of the NAMES data set.

transmit joe da(’sys1.parmlib’) mem(ieasys00,ieaips00) line

ENTER MESSAGE FOR NODEB.USER2

Joe,

 These are the parmlib members you asked me to send you.

They are in fact the ones we are running today.

Yours,

John Doe

<null line>

The message text in this example was entered in line mode which would be

unusual for a user on a 3270 terminal, but which is easier to show in an example.

Example 4

Joe begins the receive process for the members transmitted in Example 3 and ends

the receive without actually restoring the data onto the receiving system, because

Joe does not know where he wants to store the data.

receive

Dataset SYS1.PARMLIB from USER1 on NODEA

Members: IEASYS00, IEAIPS00

Greetings from John Doe.

Joe,

 These are the parmlib members you asked me to send you.

They are in fact the ones we are running today.

Yours,

John Doe

NODEA.USER1

Enter restore parameters or ’DELETE’ or ’END’ +

end

In the preceding example, notice that the PROLOG and EPILOG lines have been

appended to the message entered by the sender. In an actual RECEIVE operation,

the original message text would appear in both uppercase and lowercase just as

the sender had entered it (assuming the receiver’s terminal supports lowercase.)

Example 5

Joe receives the ‘SYS1.PARMLIB’ members transmitted in Example 3. Specify

space parameters for the data set that will be built by RECEIVE to leave space for

later additions.

RECEIVE Command

254 z/OS V1R9.0 TSO/E Command Reference

receive

Dataset SYS1.PARMLIB from USER1 on NODEA

Members: IEASYS00, IEAIPS00

Greetings from John Doe.

Joe,

 These are the parmlib members you asked me to send you.

They are in fact the ones we are running today.

Yours, John Doe

NODEA.USER1

Enter restore parameters or ’DELETE’ or ’END’ +

da(’nodea.parmlib’) space(1) cyl dir(10)

Restore successful to dataset ’NODEA.PARMLIB’

No more files remain for the RECEIVE command to process.

The received members IEASYS00 and IEAIPS00 are saved in the output data set

with their member names unchanged.

Example 6

Send a message to a user on another system. For more information about the

TRANSMIT command, see the “TRANSMIT command” on page 342.

transmit davy

The system displays the following screen for input:

 DATA FOR ALAMO.CROCKETT

0001 Davy,

0002 Did you check the report I gave you last week?

0003 Joe

0004

0005 ...

Press PF3 to send the message.

In this example, the target user is identified by his nickname and no data set is

specified, causing the terminal to be used as an input source. You can type your

data, scroll using program function (PF) keys PF7 or PF19 and PF8 or PF20, and

exit using PF3 or PF15, or cancel using the PA1 key.

Example 7

Send a member of a partitioned data set as a message. In this example, the

member MEETINGS of the partitioned data set MEMO.TEXT is sent as a message

to JOE.

transmit nodeb.joe msgds(memo.text(meetings))

 INMX000I 0 message and 7 data records sent as 5 records to NODEB.JOE

 INMX001I Transmission occurred on 07/27/87 at 09:00:35.

READY

JOE receives the message in his data set MY.LOG, instead of the default log data

set, LOG.MISC:

RECEIVE Command

Chapter 1. TSO/E commands and subcommands 255

receive logds(my.log)

 INMR901I Dataset ** MESSAGE ** from MIKE on NODED

 THIS IS A SCHEDULE OF STATUS MEETINGS FROM AUGUST THROUGH NOVEMBER:

 AUGUST MONDAYS AT 9:00 A.M. IN MY OFFICE

 SEPTEMBER TUESDAYS AT 10:00 A.M. IN YOUR OFFICE

 OCTOBER WEDNESDAYS AT 10:00 A.M. IN JACK’S OFFICE

 NOVEMBER MONDAYS AT 2:00 P.M. IN JILL’S OFFICE

RENAME command

Use the RENAME command to:

v Change the name of a single-volume, non-VSAM cataloged, non-SMS managed

data set.

v Change the name of a single or multi-volume, non-VSAM cataloged, SMS

managed data set.

v Change the name of a member of a partitioned data set

v Create an alias for a member of a partitioned data set.

The access method services ALTER command changes the name of VSAM data

sets and is described in z/OS DFSMS Access Method Services for Catalogs.

When a password protected data set is renamed, the data set does not retain the

password. You must use the PROTECT command to assign a password to the data

set before you can access it.

RENAME command syntax

�� RENAME

REN
 old_name new_name

ALIAS
 ��

RENAME command operands

old_name

specifies the name that you want to change. The name that you specify can be

the name of an existing data set or the name of an existing member of a

partitioned data set.

new_name

specifies the new name to be assigned to the existing data set or member. If

you are renaming or assigning an alias to a member, you can supply only the

member name and omit all other levels of qualification.

ALIAS

specifies the member name supplied for new_name operand is to become an

alias for the member identified by the old_name operand.

 You can rename several data sets by substituting an asterisk for a qualifier in

the old_name and new_name operands. The system changes all data set

names that match the old name except for the qualifier corresponding to the

asterisk’s position.

Note: Do not use the RENAME command to create an alias for a linkage editor

created load module.

RECEIVE Command

256 z/OS V1R9.0 TSO/E Command Reference

RENAME command return codes

 Table 40. RENAME command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

RENAME command examples

Example 1

Operation: You have several non-VSAM data sets named:

userid.mydata.data

userid.yourdata.data

userid.workdata.data

that you want to rename:

userid.mydata.text

userid.yourdata.text

userid.workdata.text

You can specify either: or

rename *.data,*.text

Example 2

Operation: Assign an alias SUZIE to the partitioned data set member named

ELIZBETH(LIZ).

REN ’ELIZBETH(LIZ)’ (SUZIE) ALIAS

RUN command

Use the RUN command to compile, load, and execute the source statements in a

data set. The RUN command is designed specifically for use with certain licensed

programs. It selects and invokes the particular licensed program needed to process

the source statements in the data set that you specify. Table 41 shows which

licensed program is selected to process each type of source statement.

 Table 41. Source statement/licensed program relationship

Source Licensed program

Assembler Assembler (F) and TSO Assembler Prompter

COBOL OS/VS COBOL Release 2.4 and TSO COBOL Prompter

FORTRAN FORTRAN IV (G1) and TSO FORTRAN Prompter Code and Go

FORTRAN

PLI PL/I Checkout Compiler or PL/I Optimizing Compiler

VSBASIC VSBASIC

The RUN command and the RUN subcommand of EDIT perform the same basic

function.

RUN command syntax

RENAME Command

Chapter 1. TSO/E commands and subcommands 257

�� RUN

R
 data_set_name

'parameters'
 ASM

COBOL

GOFORT

FORT

PLI

VSBASIC

 ��

ASM

�

 ASM

LIB(

data_set

)

COBOL

�

 COBOL

LIB(

data_set

)

GOFORT

 GOFORT

LMSG

FIXED

SMSG

FREE

FORT

�

 FORT

LIB(

data_set

)

PLI

�

 OPT

PLI

CHECK

LIB(

data_set

)

VSBASIC:

VSBASIC
 SPREC

LPREC

 NOTEST

TEST

 GO

NOGO

 NOSTORE

STORE

 NOPAUSE

PAUSE

�

�
 SOURCE

OBJECT

SIZE(value)

RUN Command

258 z/OS V1R9.0 TSO/E Command Reference

RUN command operands

data_set_name ‘parameters’

specifies the name of the data set containing the source program. A string of up

to 100 characters can be passed to the program by the parameters operand

(valid only for data sets which accept parameters).

ASM

specifies the TSO Assembler Prompter licensed program and the Assembler (F)

are to be invoked to process source programs.

 If the rightmost qualifier of the data set name is ASM, this operand is not

required.

LIB(data_set)

specifies the library or libraries that contain subroutines needed by the program

you are running. These libraries are concatenated to the default system libraries

and passed to the loader for resolution of external references. This operand is

valid only for the following data set types: ASM, COBOL, FORT, and PLI

(Optimizer).

COBOL

specifies the TSO COBOL Prompter and the OS/VS COBOL licensed program

are to be invoked to process the source program. If the rightmost qualifier of the

data set name is COBOL, this operand is not required.

GOFORT

specifies the Code and Go FORTRAN licensed program is to be invoked to

process the source program. If the right most qualifier of the data set name is

GOFORT, this operand is not required.

LMSG | SMSG

LMSG

specifies long form diagnostic messages are to be provided.

SMSG

specifies short form diagnostic messages are to be provided.

FIXED | FREE

FIXED

specifies statements adhere to the standard FORTRAN column

requirements and are 80 bytes long.

FREE

specifies statements are of variable lengths and do not conform to set

column requirements.

FORT

specifies the TSO FORTRAN Prompter and the FORTRAN IV (G1) licensed

programs are to be invoked to process the source program.

PLI

specifies the PL/I Prompter and either the PL/I Optimizer compiler or the PL/I

Checkout compiler are to be invoked to process the source program. If the

rightmost qualifier of the data set name is PLI, this operand is not required.

CHECK | OPT

CHECK

specifies the PL/I Checkout compiler. If you omit this operand, the OPT

operand is the default value.

RUN Command

Chapter 1. TSO/E commands and subcommands 259

OPT

specifies the PL/I Optimizing compiler. If both CHECK and OPT are

omitted, OPT is the default value.

VSBASIC

specifies the VSBASIC licensed program is to be invoked to process the source

program.

LPREC | SPREC

LPREC

specifies long precision arithmetic calculations are required by the

program.

SPREC

specifies short precision arithmetic calculations are adequate for the

program. SPREC is the default value.

TEST | NOTEST

TEST

specifies testing of the program is to be performed.

NOTEST

specifies the TEST function is not to be performed. NOTEST is the

default value.

GO | NOGO

GO

specifies the program is to receive control after compilation. GO is the

default value.

NOGO

specifies the program is not to receive control after compilation.

STORE | NOSTORE

STORE

specifies the compiler is to store an object program.

NOSTORE

specifies the compiler is not to store an object program. NOSTORE is

the default value.

PAUSE | NOPAUSE

PAUSE

specifies the compiler is to prompt to the terminal between program

chains.

NOPAUSE

specifies no prompting between program chains. NOPAUSE is the

default value.

SOURCE | OBJECT

SOURCE

specifies the new source code is to be compiled. SOURCE is the

default value.

OBJECT

specifies the data set name entered is a fully-qualified name of an

object data set to be executed by the VSBASIC compiler.

RUN Command

260 z/OS V1R9.0 TSO/E Command Reference

SIZE(value)

specifies the number of 1000-byte blocks of user area where value is an

integer of one to three digits.

Determining compiler type

The system uses two sources of information to determine which compiler is to be

used. The first source of information is the optional operand (ASM, COBOL,

GOFORT, FORT, PLI, or VSBASIC) that you can specify for the RUN command. If

you omit this operand, the system checks the descriptive qualifier of the data set

name that is to be executed. If the system cannot determine the compiler type from

the descriptive qualifier, you are prompted for it unless PROFILE NOPROMPT is in

effect.

The RUN command uses standard library names, such as SYS1.FORTLIB and

SYS1.COBLIB, as the automatic call library. This is the library searched by the

linkage editor or binder to locate load modules referred to by the module being

processed for resolution of external references.

RUN causes other commands to be executed from an in-storage list. If an error

occurs, one of these commands might issue a message that has additional levels of

information. This additional information is not available to the user unless the

PAUSE option is indicated in the user’s profile. The PAUSE option is described in

the section under the PROFILE command.

RUN command return codes

 Table 42. RUN command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

RUN command examples

Example 1

Operation: Compile, load, and execute a source program composed of VSBASIC

statements.

Known:

v The name of the data set containing the source program is

DDG39T.MNHRS.VSBASIC.
run mnhrs.vsbasic

SEND command

Use the SEND command or the SEND subcommand of EDIT to send a message to

anyone of the following destinations:

v One or more users

v An operator specified by route code

v An operator console specified by name

SEND can be used to send a message from one user to another user in the same

JESPLEX.

RUN Command

Chapter 1. TSO/E commands and subcommands 261

In order for the recipient to receive and display the message, the recipient’s profile

must include the INTERCOM operand. To change the profile, use the PROFILE

command.

By default, when you issue the SEND command with the NOW operand, the

message is displayed on the recipient’s screen if he or she is logged on and

receiving messages. If the receiver is not logged on or is not receiving, the

message is deleted and you receive a message stating why the message was not

displayed.

If you issue SEND with the LOGON operand and the recipient is logged on and

receiving, the message is also displayed. If the recipient is not logged on when you

send the message, the message is stored in the broadcast data set. (If your

installation uses individual user logs, SEND stores the message in the user log,

truncating trailing blanks. Otherwise, SEND stores the message in the broadcast

data set and does not truncate trailing blanks.)

When you issue SEND with the SAVE operand, the message is stored even if the

recipient is logged on. SEND stores the message in the broadcast data set unless

your installation uses individual user logs, in which case, the message is stored in

the recipient’s user log.

Installations can use security enhancements to customize how the SEND command

works. For example, using RACF, an installation can control which users can send

messages to other users. If your installation uses these security features and you

send a message to a user that you are not authorized to send messages to, the

system cancels your message and displays an informational message on your

terminal.

SEND also works differently if your installation uses security labels and security

checking. Each time you send a message, the security label you are logged on with

is associated with the message. The security label is used to determine if the

recipient can view the message.

If you issue SEND NOW or SEND LOGON, the sender’s current security label is

associated with the message. If the recipient is logged on at a security label that is

equal to or greater than the security label of the message, the message is

displayed immediately. If SEND NOW was specified and the recipient’s security

label is less than the message’s security label, the message is canceled. If SEND

LOGON was specified and the recipient’s security label is less than the message’s

security label, the message is saved in the recipient’s user log.

If the message you send is to be saved (when you issue SEND SAVE or SEND

LOGON and the recipient is not logged on), the message’s security label is saved

along with the message in the recipient’s user log. The recipient can view

messages saved in the user log by issuing the LISTBC command. All messages in

the recipient’s user log that have a security label that is less than or equal to the

security label of the recipient are then displayed. Messages that have a security

label higher than the security label the recipient logged on with are not displayed.

See “LISTBC command” on page 174 for more information about receiving

messages from a user log.

If your installation uses security labels and security checking, messages are stored

in user logs. If you try to send a message to another user who does not have a

user log and the message is to be saved, the message is not sent. You get a

message explaining why the message cannot be saved.

SEND Command

262 z/OS V1R9.0 TSO/E Command Reference

The syntax and function of the SEND subcommand of EDIT is the same as that of

the SEND command.

SEND command syntax

��

SEND

SE

'text'

�

 2

OPERATOR(

route_code

)

USER(

*

)

user_id

CN(

console_name

)

INTERNAL

NOW

LOGON

SAVE

NOWAIT

WAIT

��

SEND command operands

‘text’

specifies the message to be sent. You must enclose the text of the message

within apostrophes (single quotation marks). The message cannot exceed 115

characters, including blanks. If no other operands are used, the message goes

to the console operator. If you want apostrophes to be printed, you must enter

two apostrophes to get one.

USER(user_id | *)

user_id

specifies the user identification of one or more terminal users who are to

receive the message. A maximum of 20 identifications can be used. The

message will be routed to the system within the sysplex to which the

recipient is logged on.

* specifies the message is sent to the user ID associated with the issuer of

the SEND command. If * is used with a SEND command in a CLIST, the

message is sent to the user executing the CLIST. If it is used with the

SEND command at a terminal, * causes the message to be sent to the

same terminal.

OPERATOR(2 | route_code)

specifies that you want the message sent to the operator indicated by the

route_code. If you omit the route_code, the default is two (2); that is, the

message goes to the operator. If both USER (identification) and OPERATOR

are omitted, OPERATOR is the default. The integer corresponds to routing

codes for the write-to-operator (WTO) macro.

 If you send a message with a length of greater than 72 characters to

OPERATOR or a console using the SEND command, the message is issued as

two WTOs.

CN(console_name| INTERNAL)

specifies the message is to be queued to the indicated operator console.

console_name

is 2 to 8 alphanumeric characters, the first of which must be alphabetic or

one of the special characters #, $, or @.

Note: Except for extended MCS consoles, console names are defined by

your installation.

SEND Command

Chapter 1. TSO/E commands and subcommands 263

|

|
|

|
|
|

|
|

INTERNAL

specifies that the message is to be sent to any active console defined with

INTIDS=Y. For additional information about defining consoles with

INTIDS=Y, see z/OS MVS Planning: Operations.

 If you send a message with a length of greater than 72 characters to

OPERATOR or a console using the SEND command, the message is issued as

two WTOs.

NOW | LOGON | SAVE

NOW

specifies that you want the message to be sent immediately. If the recipient

is not logged on or is not receiving messages, you are notified and the

message is deleted. If your installation uses security labels and security

checking and the recipient is logged on and is receiving messages, but

does not have an appropriate security label to view the message, you are

notified and the message is deleted. NOW is the default value.

LOGON

specifies that you want the message retained in the SYS1.BRODCAST data

set or the user log data set, if the recipient is not logged on, is not receiving

messages, or cannot receive messages because of SECLABEL checking. If

the recipient is currently using the system and receiving messages, the

message is sent immediately. If your installation uses security labels and

security checking, and the recipient is logged on, is receiving messages,

and has an appropriate security label to view the message, then the

message is sent immediately. Otherwise, the message is saved, and the

recipient must issue LISTBC or LOGON specifying MAIL to retrieve the

message.

 Using LOGON, a message can be saved for retrieval by a user on any

system where the SYS1.BRODCAST data set or user log data set is

properly shared.

SAVE

specifies the message text is to be stored in the mail section of

SYS1.BRODCAST or the user log data set without being sent to any user.

Messages stored in the broadcast data set or the user log data set can be

retrieved by using either LISTBC or LOGON commands.

 Using SAVE, a message can be saved for retrieval by a user on any

system where the SYS1.BRODCAST data set or user log data set is

properly shared.

NOWAIT | WAIT

NOWAIT

specifies that you do not want to wait if system output buffers are not

immediately available for all specified logged-on terminals. You are notified

of all specified users who did not receive the message. If you specified

LOGON, mail is created in the SYS1.BRODCAST data set or the user log

data set for the specified users whose terminals are busy or who have not

logged on. NOWAIT is the default value.

WAIT

specifies that you want to wait until system output buffers are available for

all specified logged on terminals. This ensures that the message is received

by all specified logged on users, but it also means that you might be locked

out until all such users have received the message.

SEND Command

264 z/OS V1R9.0 TSO/E Command Reference

|
|
|
|

|
|
|

SEND command return codes

 Table 43. SEND command return codes

0 Processing successful.

12 Processing unsuccessful.

The following return codes are valid only if you have an installation-defined user log

data set:

 Table 44. SEND command return codes (installation-defined user log data set)

0 Message was successfully sent for display; all users received it.

4 Message was successfully stored. Either the user is not logged on, or is

not logged on with a security label that allows the user to view the

message.

8 Message was successfully stored; saved the message.

12 Message was not displayed; user is not logged on.

16 Message was not displayed; user’s terminal is busy.

18 Sender not permitted to send messages to one or more specified users.

20 Message was not displayed; user is not accepting messages.

22 Message cannot be viewed by one or more specified users; their

security label is lower than the sender’s security label.

24 Message was not stored; saving is not allowed.

26 One or more users did not have an individual user log and the message

can not be saved in the broadcast data set.

28 Message was not stored; user log unavailable.

32 Message was not sent; user denied access.

36 Message was not sent; SEND is inactive.

40 Message was not sent; no such user ID.

44 Message was not sent; command is not authorized.

92 Message was not sent; system error.

SEND command examples

Example 1

Operation: Send a message to the operator.

Known:

v The message: What is the weekend schedule?
send ’what is the weekend schedule?’

Example 2

Operation: Send a message to two other terminal users.

Known:

v The message: If you have data set ‘mylib.load’ allocated, please free it. I need it

to run my program.

v The user identification for the terminal users: JANET5 and LYNN6

v The message is important and you want to wait until the recipients have received

the message.

SEND Command

Chapter 1. TSO/E commands and subcommands 265

send ’if you have data set "mylib.load" allocated, -

please free it. i need it to run my program.’ -

user(janet5,lynn6) wait

Example 3

Operation: Send a message that is to be delivered to ‘BETTY7’ when she begins

her terminal session or now if she is currently logged on.

Known:

v The recipient’s user identification: BETTY7

v The message: Is your version of the simulator ready?

v If she is not logged on, you want to save the message until she logs on again.

There is no rush for her to get it and to respond to it.
send ’is your version of the simulator ready?’ -

user(betty7) logon

Example 4

Operation: Send a message to the operator console ‘TAPELIB’.

Known:

v The console name: TAPELIB

v The message: Please mount tape number A021. I need it to run my program.
send ’Please mount tape number A021. I need -

it to run my program.’ CN(TAPELIB)

SMCOPY command

Use the SMCOPY command to copy all or part of a stream or data set to another

stream or data set (that is, stream to stream, stream to data set, data set to stream,

or data set to data set).

Notes:

1. When using SMCOPY under ISPF, you must be logged on to Session Manager

to copy TSOOUT and TSOIN streams. Also, be certain SESSMGR is set to YES

in ISPF. For information about setting SESSMGR to YES, see z/OS ISPF

Planning and Customizing.

2. If the source and target of the copy request are both data sets, (SYSOUT or

QSAM), you do not have to be logged on under the Session Manager to use

the SMCOPY command.

SMCOPY command syntax

��

SMCOPY

SMC

 FROMSTREAM TSOOUT

FS

(

stream_name

)

FROMDATASET

(dsname)

FDS

�

SEND Command

266 z/OS V1R9.0 TSO/E Command Reference

�

 A

PRINT(

sysout_class

)

TODATASET

(dsname)

TDS

TOSTREAM

(stream_name)

TS

CAPS

ASIS

NOTRANS

FORMAT

FMT

NOFORMAT

NOFMT

PREFORMAT

PREFMT

�

�
LINE(start_line

)

:stop_line

 ��

SMCOPY command operands

FROMDATASET(dsname)

specifies the name of the data set that contains the information to be copied.

The data set must be a sequential data set or a member of a partitioned data

set with either fixed- or variable-length records. The data set must reside on a

volume that is mounted or on a device that is on-line.

FROMSTREAM([stream_name])

specifies the name of the input stream that contains the information to be

copied. If you do not specify FROMDATASET or FROMSTREAM, the default is

FROMSTREAM. If you do not specify stream_name, the default is TSOOUT.

PRINT(sysout_class)

specifies that the information is to be copied to a SYSOUT data set of the

specified SYSOUT class and printed on a system printer. You can print up to

132 characters per line. If PRINT, TODATASET, and TOSTEAM are omitted,

then SMCOPY assumes PRINT(A).

TODATASET(dsname)

specifies the name of the data set into which the information is to be copied.

The data set must be sequential or a member of a partitioned data set with

either fixed-or variable-length records. The data set must reside on a volume

that is mounted or on a device that is on-line.

 If the data set does not exist, the Session Manager allocates a new data set. If

the information is being copied from a data set (the FROMDATASET operand is

specified), the attributes from this data set are used except for the size which

defaults to 5 tracks primary and 5 tracks secondary space. If more space is

required for the data set than the default provides, you must preallocate the

data set. If the information is being copied from a stream (the FROMSTREAM

operand is specified), the new data set is allocated with the following attributes:

RECFM

VB or VBA if FORMAT or PREFORMAT is specified.

LRECL

<256

BLKSIZE

3120

TOSTREAM(stream_name)

specifies the name of the output stream for the copy operation.

ASIS | CAPS | NOTRANS

SMCOPY Command

Chapter 1. TSO/E commands and subcommands 267

ASIS

specifies that the Session Manager is to leave lowercase letters as

lowercase letters and translate the unprintable characters to blanks (X'40').

 Use the ASIS operand if the information is to be printed on a printer with a

dual-case print train (such as TN or T11).

CAPS

specifies that the Session Manager is to translate lowercase letters to

uppercase and translate the unprintable characters to blanks (X'40').

NOTRANS

specifies that no translation is to occur.

FORMAT | NOFORMAT | PREFORMAT

FORMAT

specifies that carriage control characters are to be placed in the copied

information. If the information is being placed in a stream, the highlighted

lines are highlighted in the stream.

 If the information is being copied to a data set, the record format must be

FBA or VBA to indicate the presence of ASA control characters. If the data

set is new, the Session Manager allocates it with a VBA record format.

 FORMAT is ignored if FROMSTREAM is not specified.

NOFORMAT

specifies that no control characters are to be placed in the copied

information.

 If the information is being copied from a data set, the data set must have a

FB or VB record format. If the information is being copied from a stream to

a data set, the data set must have a FB or VB record format. If the

information is being copied from a data set to a data set, both data sets

must have the same format (FB or VB). If the data set that the information

is going into is new, the Session Manager allocates it with a VB record

format (if it is being copied to a stream) or it is allocated with the same

record format as the data set it is coming from (for a data set to data set

copy operation).

PREFORMAT

specifies that the source for the copy (stream or data set) already contains

carriage control characters. Use this operand when the SNAPSHOT

command was previously used to place information in a stream or data set.

 If the information is being copied from a data set, the data set must have a

FBA or VBA record format. If the information is being copied from a stream

to a data set, the data set must have a FBA or VBA record format. If the

information is being copied from a data set to a data set, both data sets

must have the same format (FBA or VBA). If the data set that the

information is going into is new, the Session Manager allocates it with a

VBA record format (if it is being copied to a stream) or it is allocated with

the same record format as the data set it is coming from (for a data set to

data set copy operation).

LINE(start_line |stop_line)

specifies the range of lines to be copied. The default is the first line of the

information and the last line of the information.

 If the information is being copied from a stream, you can find specific line

numbers by using the QUERY, SMFIND, or FIND.LINE commands. If the

SMCOPY Command

268 z/OS V1R9.0 TSO/E Command Reference

information is being copied from a data set, ‘LINE’ represents records of the

data set, not the line numbers within a numbered data set.

SMCOPY command return codes

 Table 45. SMCOPY command return codes

0 Processing successful.

4 Processing successful. Copy operation ended at the end of file or at the

end of stream.

8 Processing unsuccessful. The copy was not performed.

12 Processing unsuccessful. Internal error, contact your system

programmer.

SMCOPY command examples

Example 1

Copy the TSOOUT stream to the system printer, translating all lowercase letters to

uppercase.

smcopy

Example 2

Copy the member ZLOGON of the data set ‘SYS1.CLIST’ to the member ZLOGON

of the data set TEST.CLIST.

smcopy fromdataset(’sys1.clist(zlogon)’)

 todataset(test.clist(zlogon))

Example 3

Copy the data set containing TSO/E commands from the data set SAMPLE and

place these commands in the TSOIN stream where they will be executed.

smcopy fromdataset(’sample.commands.data’)

 tostream(tsoin)

SMFIND command

Use the SMFIND command to locate a string of characters in a stream. If the text

string is found, the Session Manager displays the line number of the text string in

the output stream for the TSO/E function (TSOOUT in the default environment) and

puts the line number in register 15. If operating from a CLIST, you can access the

line number from the CLIST variable ‘&LASTCC’.

Note: SMFIND command processing assumes that the last line of the output

stream is the SMFIND command. Therefore, the SMFIND command does

not search the last line of the output stream.

SMFIND command syntax

��

SMFIND

SMF

text_string

TSOOUT

STREAM(

stream_name

)

 BACKWARD

FORWARD

�

SMCOPY Command

Chapter 1. TSO/E commands and subcommands 269

�
ALL

FIRST

ANY

ASIS

LINE(line_1

)

:line_2

 ��

SMFIND command operands

text_string

specifies the string of characters to be found. The text_string can be up to 256

characters in length and must be enclosed in delimiters that are not present in

the text_string.

STREAM(stream_name)

specifies the name of the stream to be searched.

BACKWARD | FORWARD

BACKWARD

specifies that the Session Manager is to search for the text_string from the

current location backward toward the top of the stream.

FORWARD

specifies that the Session Manager is to search for the text_string from the

current location forward toward the bottom of the stream.

ALL | FIRST

ALL

specifies that the Session Manager is to find all occurrences of the

text_string. The line number of each found text_string is displayed in the

output stream for the TSO/E function. Register 15 (and the CLIST variable

&LASTCC) contains the line number of the last occurrence of the

text_string.

FIRST

specifies that the Session Manager is to find only the first occurrence of the

text_string. The Session Manager displays the line number of the found

text_string in the output stream for the TSO/E function. It also places the

number in register 15 and the CLIST variable &LASTCC.

ANY | ASIS

ANY

specifies that upper and lowercase differences are to be ignored when

finding the text_string.

ASIS

specifies that the Session Manager is to find an exact match of the entered

text_string.

LINE(line_1:line_2)

specifies the range of lines to be searched.

 If only line_1 is specified, the Session Manager searches from that line to the

top or bottom of the stream depending on whether BACKWARD or FORWARD

is specified.

 If you specify a value for line_1 or line_2 that is not in the stream, the Session

Manager uses the top or bottom line in the stream.

SMFIND Command

270 z/OS V1R9.0 TSO/E Command Reference

SMFIND command return codes

Upon completion, SMFIND returns the following:

 Table 46. SMFIND command return codes

0 Return code 0 means one of the following:

v The text_string was not found.

v The specified stream was not found.

v The command was incorrectly specified and SMFIND was unable to

prompt for correct information.

Other A positive integer specifying the line number of the found text_string.

The maximum value is 16,777,216.

SMFIND command examples

Example 1

Find the next occurrence of ‘time’ in the TSOOUT stream.

smfind ’time’ forward

Example 2

Find the previous occurrence of ‘time’ in the TSOOUT stream.

smfind ’time’

SMPUT command

Use the SMPUT command to place a text string in a stream. If you place the text

string in the TSOIN stream, it is interpreted as a TSO/E command. If you place the

text string in the SMIN stream, it is interpreted as a Session Manager command.

SMPUT command syntax

��

SMPUT

SMP

'text_string'
 SMIN

stream_name

1

INTENSITY(

intensity

)

��

SMPUT command operands

text_string

specifies the string of characters to be placed in the stream. The text_string

must be enclosed in delimiters that are not in the text_string. It can be up to

32768 characters in length, excluding the delimiters. If the text_string is being

sent to the SMIN stream, it can be up to 512 characters in length.

stream_name

specifies the name of the stream where the text_string is to be placed.

INTENSITY(intensity | 1)

specifies the brightness at which the information in the stream is to be

displayed. The valid values are:

0 The information in the stream is not to be displayed. You can see the line

that the information occupies, but the information itself is invisible.

1 The information is to be displayed at normal intensity.

2 The information is to be highlighted.

SMFIND Command

Chapter 1. TSO/E commands and subcommands 271

Note: You must specify stream_name if you specify a value for INTENSITY.

SMPUT command return codes

 Table 47. SMPUT command return codes

0 Processing successful.

Note: If the text_string contained Session Manager or TSO/E

commands, the zero return code does not indicate successful execution

of those commands.

4 Syntax error.

8 The stream was not found.

12 Processing unsuccessful.

SMPUT command examples

Example 1

Place the TSO/E TIME command highlighted in the TSOIN stream.

smput ’time’ tsoin intensity(2)

STATUS command

Use the STATUS command to have the status of batch jobs displayed at your

terminal. You can obtain the status of all batch jobs, several specific batch jobs, or

a single batch job. The information you receive for each job tells you whether it is

awaiting execution, is currently executing, or has completed execution but is still on

an output queue. It also indicates whether the job is in hold status. An attention

interrupt during the processing of STATUS results in termination of the command,

but not the job.

STATUS is a foreground-initiated-background (FIB) command. You must be

authorized by installation management to use STATUS. This command is generally

used in conjunction with the CANCEL, SUBMIT, and OUTPUT commands.

Requesting an attention interrupt after issuing a STATUS command might terminate

that command’s processing. In this case, you cannot resume STATUS processing

by pressing the Enter key as you can after most attention interrupts.

STATUS command syntax

�� STATUS

ST

�

,

(

jobname

)

(jobid)

 ��

STATUS command operand

(jobname (jobid))

specifies the name of the batch job for which you want to know the status. If

two or more jobs have the same job name, the system displays the status of all

the jobs encountered and supplies job IDs for identification. When more than

one job name is included in the list, the list must be enclosed within

SMPUT Command

272 z/OS V1R9.0 TSO/E Command Reference

parentheses. When you specify a list of job names, you must separate the job

names with standard delimiters. By default, if you do not specify any job names,

you receive the status of all batch jobs in the system whose job names consist

of your user ID and one identifying character (alphabetic, numeric, or one of the

special characters #, $, or @). The processing may be different if your

installation has replaced the default IBM-supplied installation exit.

 The optional job ID subfield can consist of 1 to 8 alphanumeric characters. The

first character must be alphabetic or one of the special characters (#, $, or @).

The job ID is a unique job identifier assigned by the job entry subsystem (JES)

at the time the job was submitted to the batch system. Currently the only valid

forms of job identifiers (jobid) assigned by JES are:

 JOBnnnnn or Jnnnnnnn - Jobs

 STCnnnnn or Snnnnnnn - Started Tasks

 TSUnnnnn or Tnnnnnnn - TSO Users

STATUS command return codes

 Table 48. STATUS command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

SUBMIT command

Use the SUBMIT command to submit one or more batch jobs for background

processing. Background processing is explained in z/OS TSO/E User’s Guide.

SUBMIT is a foreground-initiated-background (FIB) command. You must be

authorized by installation management to use SUBMIT. This command is generally

used in conjunction with the CANCEL, STATUS, and OUTPUT commands.

Users can submit jobs containing only TSO/E commands to execute commands in

the background. If a job contains the LOGON command and SUBMIT finds it before

encountering a JOB statement, SUBMIT uses the LOGON command to build the

JOB and EXEC statements. If your installation uses security labels and security

checking, you can specify LOGON in the job stream and include the SECLABEL

operand. LOGON builds a JOB statement that contains the security label from the

LOGON command. Using the SECLABEL operand lets users submit a job with a

different security label than the security label they used to log on to TSO/E.

Users also can submit jobs to run at a different security label than the one they

logged on with by specifying the SECLABEL operand on the JOB statement. The

SECLABEL that is specified must be one that the user has access to.

If a job does not contain the LOGON command or JOB statement with a security

label, the job runs at the security label the user logged on with.

If users meet certain RACF requirements, they can define another user to submit

their jobs for them. When this method of submitting jobs, called surrogate job

submission, is used, jobs are submitted from the second (surrogate) user’s TSO/E

ID. The jobs run as if submitted by the first user. For more information about

surrogate job submission, see z/OS Security Server RACF General User’s Guide.

STATUS Command

Chapter 1. TSO/E commands and subcommands 273

Requesting an attention interrupt after issuing a SUBMIT command might terminate

that command’s processing. In this case, you cannot resume SUBMIT processing

by pressing the Enter key as you can after most attention interrupts.

SUBMIT command syntax

��

SUBMIT

SUB

�

*

(

data_set

)

PAUSE

END(nn)

 NOHOLD

HOLD

�

�
 NOJOBCHAR

JOBCHAR(characters)

PASSWORD

NOPASSWORD

 USER(user_id)

NOUSER

 NOTIFY

NONOTIFY

��

SUBMIT command operands

(data_set) | *

(data_set)

specifies one or more data set names or names of members of partitioned

data sets that define an input stream (JCL plus data). If you specify more

than one data set name, separate them with delimiters, and enclose them

in parentheses.

* An asterisk (*) specifies that the job stream is to be obtained from the

current source of input (for example, the terminal or currently executing

CLIST). TSO/E commands can be entered directly without creating and

editing a data set.

Note: All characters in the job stream are converted to uppercase before

being processed.

This positional operand and the data_set positional operand are mutually

exclusive. Either of both operands is required.

 The SUBMIT * function described here is not available in EDIT mode. Job

stream input received directly from the terminal or any other source will not

be saved after the job is submitted. The SUBMIT * subcommand of EDIT

continues to select the current data set as the input job stream. See the

SUBMIT subcommand of EDIT for more information.

 If the submitted job contains a job statement, the SUBMIT operands that

generate job statements are ignored. The SUBMIT operands do not

override the job statement.

Note: When TSO/E processes a job in a CLIST that uses the SUBMIT *

command, statements following the DD * statement are left adjusted

to column 1, thereby removing leading spaces. (This is unique to

CLIST processing only; it is not a batch concern.) Refer to z/OS

TSO/E CLISTs, for a procedure that preserves the leading spaces in

a CLIST.

PAUSE | END(nn)

PAUSE

specifies that you want to make a decision after the job stream has been

SUBMIT Command

274 z/OS V1R9.0 TSO/E Command Reference

read in. This decision is to either continue the SUBMIT * process or

terminate. If this operand is omitted, the job stream is processed when the

end of the job stream is detected. The default is not to pause when the end

of the job stream is reached. If you have not specified PAUSE and you

subsequently make an error, the only way the submission can be aborted is

with an attention interrupt. This is an optional operand.

 Pause is valid only when * (asterisk) is specified for the positional

parameter and you are not in EDIT mode.

END(nn)

specifies a 1- or 2-character string to indicate the end of the job stream.

Only alphabetic, numeric, or the special characters #, $, or @ are valid

END characters. If this operand is not specified, a null or blank line

indicates the end of the job stream. Specifying this operand allows blank

lines to be part of the job stream. To terminate the job stream, the END

character(s) must begin in column 1 and be the only data on the input line.

The END character string is not considered part of the job stream. END is

valid only when * (asterisk) is specified for the positional parameter and

when you are not in EDIT mode.

HOLD | NOHOLD

HOLD

specifies SUBMIT is to have job output held for use with the OUTPUT

command by defaulting to the held MSGCLASS supplied by the installation

manager for the user. Output directed to DD statements is held if

SYSOUT=* or HOLD=YES is specified on the DD statement.

NOHOLD

specifies job output is not to be held. NOHOLD is the default.

JOBCHAR(characters) | NOJOBCHAR

JOBCHAR(characters)

specifies characters to be appended to the jobname on every JOB

statement in the data set being submitted. Use 1 character if you plan to

use the STATUS command and your job name is your user ID.

NOJOBCHAR

specifies SUBMIT is to prompt you for jobname characters whenever the

job name is the user ID. If prompting is not possible, the jobname character

defaults to the letter X. NOJOBCHAR is the default. The user ID is

determined by certain rules. See the USER operand for a list of the rules.

PASSWORD | NOPASSWORD

PASSWORD

specifies a PASSWORD operand is to be inserted on the generated JOB

statement by SUBMIT, if RACF is installed. SUBMIT prompts you to enter

the password value in print-inhibit mode, if the terminal supports the

feature. This operand is not required if a generated JOB statement or RACF

is not installed. If RACF is installed, PASSWORD is the default. The

password used is:

v The password (if executing in the foreground) entered on the LOGON

command initiating the foreground session. The current password is used

for RACF-defined users. If you have updated your password using the

LOGON command, you must enter the PASSWORD operand with the

new password on the SUBMIT command.

SUBMIT Command

Chapter 1. TSO/E commands and subcommands 275

v The password on the LOGON command (if executing in the background)

specified in the submitted data set. If a LOGON command is not in the

data set, the USER and PASSWORD operands are not to be included on

the generated JOB statement.

NOPASSWORD

specifies the PASSWORD and USER operands are not included on the

generated JOB statement. If RACF is not installed, NOPASSWORD is the

default.

USER(user_id) | NOUSER

USER(user_id)

specifies a USER operand is to be inserted on the generated JOB

statement, if RACF is installed. The user ID specified is also used as the

jobname for the generated JOB statement. For job name or user ID

comparison for NOJOBCHAR processing, see the NOJOBCHAR operand

description.

 If neither USER nor NOUSER is entered and RACF is installed, USER is

the default. The default user ID used is determined by the following rules.

The rules are ordered. If the first rule is met, then that user ID is used.

1. The user ID specified on a LOGON command in the data set being

submitted.

2. The user ID specified on the LOGON command (if executing in the

foreground) initiating the foreground session; the user ID specified on

the USER operand (if executing in the background, RACF-defined users

only) on the JOB statement initiating the background session.

3. The default user ID SUBMITJB is used.

Note: If a password is not specified, the USER operand is not generated

on the job statement. You can specify a password:

v On the user’s SUBMIT command

v On the LOGON command data set being submitted

v In the LOGON for the current session, when executing in the

foreground, by requesting that the password be stored in the TSB

via the LOGON exit.

NOUSER

specifies generated JOB statements do not include USER and PASSWORD

operands. If USER is not specified and RACF is not installed, NOUSER is

the default.

NOTIFY | NONOTIFY

NOTIFY

specifies that you are to be notified when your job terminates in the

background, if a JOB statement has not been provided. If you have elected

not to receive messages, the message is placed in the broadcast data set.

You must then enter LISTBC to receive the message. If a JOB statement is

generated, NOTIFY is the default.

 When you supply your own JOB statement, use the NOTIFY=user_id

keyword on the JOB statement if you want to be notified when the job

terminates. SUBMIT ignores the NOTIFY keyword unless it is generating a

JOB statement.

 If NOTIFY or NONOTIFY is not specified, the default is:

SUBMIT Command

276 z/OS V1R9.0 TSO/E Command Reference

v The NOTIFY operand (if executing in the foreground) is inserted on the

generated JOB statement.

v The NOTIFY operand (if executing in the background) is only inserted on

the generated JOB statement for RACF-defined users who have

specified the USER operand on the JOB statement initiating the

background session.

NONOTIFY

specifies a termination message is not to be issued or placed in the

broadcast data set. The NONOTIFY keyword is only recognized when a

JOB statement has not been provided with the job that you are processing.

SUBMIT command return codes

 Table 49. SUBMIT command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

SUBMIT command examples

Example 1

Operation: Submit two jobs for batch processing.

Known:

v The data sets that contain the jobs: ABTJQ.STRESS.CNTL and

ABTJQ.STRAIN.CNTL
submit (stress, strain)

Example 2

Operation: Concatenate and submit data sets as a single job.

Known:

v The data set that contains the JCL for the job is JCL.CNTL(ASMFCLG)

v The data set that contains the input data is MYDATA.DATA
submit (jcl(asmfclg) mydata)

This command causes a single background job to be submitted and simultaneously

concatenates a generated job card (if required), JCL, and the data. Each data set is

not submitted as a separate job.

TERMINAL command

Use the TERMINAL command to define operating characteristics that depend

primarily upon the type of terminal that you are using. You can specify the ways that

you want to request an attention interruption and you can identify hardware features

and capabilities. The TERMINAL command allows you to request an attention

interruption whether your terminal has a key for attention interrupt.

Note: The TERMINAL command is only for line mode type devices that are not in

full-screen applications. Typically TERMINAL has no effect on full-screen

devices such as 3270, nor does TERMINAL work if the user is in a

full-screen application, such as ISPF.

SUBMIT Command

Chapter 1. TSO/E commands and subcommands 277

Note: The TERMINAL command is not allowed as a TSO/E command in the

background.

The terminal characteristics that you have defined remain in effect until you enter

the LOGOFF command. If you terminate a session and begin a new one by

entering a LOGON command (instead of a LOGOFF command followed by a

LOGON command), the terminal characteristics defined in the earlier session

remain in effect during the subsequent session.

If your session is interrupted by a line disconnection and you logon again using the

LOGON RECONNECT, you must redefine all previously defined terminal

characteristics. The reason for the redefinition is that all records for defined data are

lost as a result of the line disconnection.

Note: If an invoked program issues the VTAM STTRAN macro that affects the

same hex value that the TERMINAL command changed, then the value set

by the TERMINAL command is no longer in effect.

TERMINAL command syntax

��

TERMINAL

TERM

 NOLINES

LINES(integer)

 NOSECONDS

SECONDS(integer)

 NOINPUT

INPUT(string)

�

�

BREAK

NOBREAK

TIMEOUT

NOTIMEOUT

LINESIZE(integer)

 NOCLEAR

CLEAR(string)

�

�
SCRSIZE(rows,length)

TRAN(name)

NOTRAN

 �

�

�

NOCHAR

CHAR(

(

X'hexchar'

),(

x'hexchar'

)

)

C'char'

c'char'

 ��

TERMINAL command operands

LINES(integer) | NOLINES

LINES(integer)

6

specifies an integer from 1 to 255 that indicates you want the opportunity to

request an attention interruption after the specified number of lines of

continuous output has been directed to your terminal.

NOLINES

6

specifies output line count is not to be used for controlling an attention

interruption. This is the default condition.

6. Not supported with terminals that use VTAM.

TERMINAL Command

278 z/OS V1R9.0 TSO/E Command Reference

SECONDS(integer) | NOSECONDS

SECONDS(integer)

6

specifies an integer from 10 to 2550 (in multiples of 10) to indicate that you

want the opportunity to request an attention interruption after a number of

seconds has elapsed during which the terminal has been locked and

inactive. If you specify an integer that is not a multiple of 10, it is changed

to the next largest multiple of 10.

NOSECONDS

6

specifies elapsed time is not to be used for controlling an attention

interruption. This is the default condition.

INPUT(string) | NOINPUT

INPUT(string)

6

specifies the character string, if entered as input, will cause an attention

interruption. The string must be the only input entered and cannot exceed 4

characters in length.

NOINPUT

6

specifies no character string will cause an attention interruption. This is the

default condition.

BREAK | NOBREAK

BREAK

specifies, for IBM 3767 and IBM 3770 terminals, the system can interrupt

your input. For other terminals, it specifies that your terminal keyboard is to

be unlocked to allow you to enter input whenever you are not receiving

output from the system. The system can interrupt your input with

high-priority messages. Because use of BREAK with a terminal type can

result in loss of output or error, check with your installation system manager

before specifying this operand.

Note: If a command processor for a display device is operating in

full-screen mode, VTAM treats the device as if it were operating in

NOBREAK mode. For a more detailed description, see z/OS TSO/E

Programming Services.

NOBREAK

specifies, for IBM 3767 and IBM 3770 terminals, the system is not allowed

to interrupt you (break in) with a message when you are entering data. For

other terminals, it specifies that your terminal keyboard is to be unlocked

only when your program or a command you have used requests input.

 The default for the BREAK/NOBREAK operand is determined when your

installation defines the terminal features.

TIMEOUT | NOTIMEOUT

TIMEOUT

6

specifies your terminal keyboard will lock automatically after approximately

9 to 18 seconds of no input.

NOTIMEOUT

6

specifies your terminal keyboard will not lock automatically after

approximately 9 to 18 seconds of no input.

 The default for the TIMEOUT/NOTIMEOUT operand is determined when

your installation defines the terminal features.

TERMINAL Command

Chapter 1. TSO/E commands and subcommands 279

LINESIZE(integer)

specifies the length of the line (the number of characters) that can be printed at

your terminal. The integer must not exceed 255. LINESIZE is not applicable to

the IBM 3270 display stations. The default values are:

v Teletype 33/35: 72 characters

v IBM 2741 Communication Terminal: 120 characters

v IBM 3767 Communication Terminal: 132 characters

v IBM 3770 Communication System: 132 characters

If LINESIZE (80) is coded with a RECFM equal to U, then the line is truncated.

The byte truncated (the last byte) is reserved for an attribute character.

 If you use LINESIZE to adjust the line length of an LU1 device, the line length

defaults to zero.

CLEAR(string) | NOCLEAR

CLEAR(string)

6

specifies a character string, if entered as input, causes the screen of an

IBM 3270 Display Station to be erased. The string must be the only input

entered and cannot exceed 4 characters in length.

NOCLEAR

6

specifies that you do not want to use a sequence of characters to erase the

screen of an IBM 3270 Display Station. This is the default condition.

SCRSIZE(rows,length)

specifies the screen dimensions of an IBM 3270 Display Station, an LU2 device

with VTAM, and a Network Terminal Option (NTO) terminal. When you specify

the SCRSIZE operand, you must use the LINESIZE operand to get continuous

writing on a NTO terminal.

 If you are running under Session Manager, the system ignores SCRSIZE.

rows

specifies the maximum number of lines of data that can appear on the

screen.

length

specifies the maximum number of characters in a line of data displayed on

the screen.

 Standard screen sizes (in rows and length) are:

v 6,40

v 12,40

v 12,80

v 15,64

v 24,80

v 27,132

v 32,80

v 43,80

The default values for the screen sizes are determined when your installation

defines the terminal features.

TRAN(name) | NOTRAN

TRAN(name)

7

specifies a load module that contains tables used to translate specific

7. Not supported with terminals that use TCAM.

TERMINAL Command

280 z/OS V1R9.0 TSO/E Command Reference

characters you type at the terminal into different characters when they are

seen by TSO/E. Conversely, when these characters are sent by TSO/E to

the terminal, they are retranslated. Translation of numbers and uppercase

letters is not allowed.

 Character translation is especially useful when you are using a

correspondence keyboard and would like to type the characters: <, >, │.

 They are not available on a correspondence keyboard. For example,

translation tables make it possible for you to specify that when you type the

characters: [,], !.

 TSO/E interprets them as <, >, and |.

NOTRAN

7

specifies no character translation is to take place.

CHAR | NOCHAR

CHAR

7

specifies one or more pairs of characters, in either hexadecimal or

character notation, that replace characters in the translation tables specified

by TRAN(name) or in the default translation tables. When the default

translate is used, all unprintable characters are set to blanks. The first

character of the pair is the character typed, printed, or displayed at the

terminal. The second character is the character seen by TSO. Translation of

numbers and uppercase letters is not allowed. Do not select characters that

might be device control characters.

NOCHAR

7

specifies all character translations previously specified by CHAR are no

longer in effect.

TERMINAL command return codes

 Table 50. TERMINAL command return codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

TERMINAL command examples

Example 1

Operation: Modify the characteristics of an IBM 2741 Communication Terminal to

allow operation in unlocked-keyboard mode.

Known:

v Your terminal supports the break facility. The installation has defined a default of

NOBREAK for your terminal.
terminal break

Example 2

Operation: Specify character translation for certain characters not available on an

IBM 3767 Communication Terminal with an EBCDIC keyboard.

Known:

TERMINAL Command

Chapter 1. TSO/E commands and subcommands 281

v Your terminal supports the character translation facility, and you are using the

default translation table or a previously specified translation table (that you

specified with the TRAN operand). You now want [to stand for <,] to stand for >,

and ! to stand for P.
terminal char((C’[’,X’4C’),(C’]’,X’6E’),(C’!’,X’FA’))

TEST command

Use the TEST command to test a program, command processor, or APPC/MVS

transaction program for proper execution and to locate programming errors. For

APPC/MVS transaction programs, use this command to test standard transaction

programs. However, you can also use this command to partially test a multi-trans

type transaction program up to the point where it issues GETTRANS for the next

transaction. To use the TEST command and subcommands, you should be familiar

with the Assembler language and addressing conventions. Refer to the appropriate

publications for information about how to code assembler programs and definitions

of assembler language terminology. Also, refer to z/OS TSO/E Programming Guide,

for more information about using the TEST command and the TEST tutorial. For

best results, the program to be tested should be written in Assembler language. To

use the symbolic names feature of TEST, your program should have been

assembled and link-edited with the TEST operands.

If the tested program attempts to LOAD, LINK, XCTL, or ATTACH another module,

the module is being searched for in the following sequence: TASKLIB, STEPLIB,

JOBLIB, LPA, and then LNKLST. If the module is not in any of these areas, it will

not be found. To avoid this, bring the module into virtual storage by using the LOAD

subcommand of TEST.

If you enter the TEST command with operands, a pseudo or automatic breakpoint is

established at +0 for the problem program being invoked under TEST. Therefore, do

not use the AT subcommand of TEST (AT +0).

If you use the TEST command to test inbound APPC/MVS transaction programs,

the following restrictions apply:

v You should log on with a LOGON procedure that does not allocate APPC/MVS

conversations. If APPC/MVS conversations exist, TEST issues message

IKJ57501l TEST END DUE TO ERROR + with a second-level message that explains

the error and then TEST terminates. You must then perform cleanup for the

conversations. (To clean up the conversations, log off. When you log on again,

you should ensure that any LOGON procedure command that you specified on

the logon panel does not invoke a CLIST or REXX exec that allocates

APPC/MVS conversations. Note that allocation of DFM data sets may cause

APPC/MVS conversations to be allocated.)

v The user-level transaction program profile for the LUs that are to be used for

transaction program testing must be allowed. To allow user-level transaction

program profiles, the LUADD statement in PARMLIB member APPCPMxx must

include the TPLEVEL(USER) keyword. Use the LU or BASELU keyword to

specify the LU on which to test the transaction program. These keywords are

valid only when you use the TP keyword operand on inbound APPC/MVS

transaction programs. BASELU is the default. For information about transaction

program profiles, see z/OS MVS Planning: APPC/MVS Management.

v If your installation uses RACF and security label checking has been activated,

transaction programs cannot be tested under LU=LOCAL environment. For more

information about the environment for testing transaction programs, see z/OS

MVS Programming: Writing Transaction Programs for APPC/MVS.

TERMINAL Command

282 z/OS V1R9.0 TSO/E Command Reference

See z/OS TSO/E Programming Guide for information about:

v Using the TEST command. It contains a step-by-step tutorial on how to use

TEST.

v Testing an APPC/MVS transaction program.

v Addressing conventions associated with TEST.

v Restrictions on the use of symbols.

v Programming considerations and restrictions for using TEST. These include:

– 31-bit addressing

– Using virtual fetch services

– Cross-memory environment

– The vector facility

Note: Requesting an attention interrupt while testing a password protected data set

might terminate the TEST command’s processing.

Restriction: TEST allows a user to test AMODE 24 or AMODE 31 programs.

Testing programs with any other AMODE will have unpredictable results.

TEST command syntax

��

TEST
 *

'data_set_name'

(member)

'parameters'

 LOAD

OBJECT

�

�
 NOCP

BASELU

TP(

'tp_name'

)

LU(

'lu_name'

)

KEEPTP

CP

��

TEST command operands

‘data_set_name’

specifies the name of the data set containing the program to be tested. The

program must be a load module that is a member of a partitioned data set

(PDS), a member of a partitioned data set extended (PDSE), or it must be an

object module. A data set name must be specified to test a program that is not

currently active. A currently active program is one that has abnormally

terminated or has been terminated by an attention interruption.

 When specifying the data set name for TEST, the name should be enclosed by

single quotation marks or the LOAD or OBJECT qualifier is added to the name

specified.

* specifies that the program to be tested resides in the standard search libraries

(TSOLIB (TASKLIB), STEPLIB or JOBLIB, or current LNKLST concatenation).

 Modules residing in the LPA can NOT be TESTed using the * operand.

 Modules residing both in the LPA and a library in the standard search order can

NOT be TESTed using the * operand.

(member)

if no member name for a partitioned data set or * is given, member

TEMPNAME is assumed.

TEST Command

Chapter 1. TSO/E commands and subcommands 283

If TEST is specified with a data set name, or *, registers 2 through 12 are

initialized to X’FFFFFFFF’. this allows you to determine which registers have

been changed by the tested program.

 When TEST is specified for a load module in a PDS or a program object in a

PSDE, the program being tested can invoke other user programs, if they are

members of the same PDS or PDSE. The services by which one member can

invoke another in the same PDS or PDSE include LINK, LOAD, XCTL, and

ATTACH.

 CAUTION: The program to be tested should not have the name TEST or

the name of any existing TSO/E service routine.

‘parameters’

specifies a list of parameters to be passed to the program being tested. The

‘parameters’ are valid only with the NOCP or TP keywords. If you specify the

CP operand, the system ignores the parameters. The list must not exceed 100

characters, including delimiters.

LOAD | OBJECT

LOAD

specifies the named program is either:

v a load module that has been processed by the linkage editor or binder

and is a member of a partitioned data set (PDS)

v a program object that has been processed by the DFSMS/MVS* binder

service and is a member of a partitioned data set extended (PDSE).

If both LOAD and OBJECT are omitted, LOAD is the default.

OBJECT

specifies the named program is an object module that has not been

processed by the linkage editor or the DFSMS/MVS binder service. The

program can be contained in a sequential data set or a member of a

partitioned data set.

 If OBJECT is specified on the TEST command, the tested program will be

named TEMPNAME.

CP

specifies the named program is a command processor.

NOCP

specifies that the named program is not a command processor. If you do not

specify CP, TP, or NOCP, then NOCP is the default.

TP(’tp_name’)

specifies that the named program is an inbound APPC/MVS transaction

program. tp_name specifies the name of the transaction program you want to

test. It is case sensitive and required if you specify the TP keyword. The

tp_name can have a length of 1 to 64 characters consisting of uppercase and

lowercase letters A–Z, numerals 1–9, and 19 special characters:

.<(+&*);-/,%_>?:’=". If tp_name contains an apostrophe, you must enter two

successive apostrophes for each single apostrophe.

 The TEST command does not recognize transaction program alias names. For

example, if you specify an alias of a transaction program name, it is considered

a new transaction program name.

LU(’lu_name’) | BASELU

TEST Command

284 z/OS V1R9.0 TSO/E Command Reference

LU(’lu_name’)

specifies which LU is to be used. The LU keyword is valid only when the TP

keyword is specified. lu_name specifies the LU name. The name is required

if you specify LU. The name must be in uppercase and enclosed in single

quotation marks.

BASELU

specifies the base LU for the user address space to be used. The BASELU

keyword is valid only when the TP keyword is specified. The default is

BASELU if both LU and BASELU are omitted. For more information about

the base LU, see z/OS MVS Programming: Writing Transaction Programs

for APPC/MVS.

KEEPTP

specifies that TEST should not clean up the transaction program and its

conversations when TEST terminates. If you do not specify this keyword, the

transaction program and its conversations are cleaned up when TEST

terminates. If you specify this keyword, TEST will not clean up the transaction

program and its remaining conversations.

TEST command return codes

 Table 51. TEST Command return codes

0 TEST is active.

4 TEST is inactive.

TEST command examples

Example 1

Operation: Enter TEST mode after experiencing either an abnormal termination of

your program or an attention interrupt.

Known:

v Either you have received a message saying that your foreground program has

terminated abnormally, or you have pressed the attention key while your program

was executing. In either case, you would like to begin debugging your program.
test

Example 2

Operation: Invoke a program for testing.

Known:

v The name of the data set that contains the program:

TLC55.PAYER.LOAD(THRUST)

v The program is a load module and is not a command processor.

v The prefix in the user’s profile is TLC55.

v The parameters to be passed: 2048, 80
test payer(thrust) ’2048,80’

test payer.load(thrust) ’2048,80’

Example 3

Operation: Invoke a program for testing.

Known:

v The name of the data set that contains the program: TLC55.PAYLOAD.OBJ

TEST Command

Chapter 1. TSO/E commands and subcommands 285

v The prefix in the user’s profile is TLC55.

v The program is an object module and is not a command processor.
test payload object

Example 4

Operation: Test a command processor.

Known:

v The name of the data set containing the command processor:

TLC55.CMDS.LOAD(OUTPUT)
test cmds(output) cp

or

test cmds.load(output) cp

Note: You will be prompted to enter a command for the command processor.

TSO/E prompts you for the commands you want to test.

Example 5

Operation: Invoke a command processor for testing.

Known:

v The name of the data set containing the command processor is

TLC55.LOAD(OUTPUT).

v The prefix in the user’s profile is TLC55.
test (output) cp

Example 6

Operation: Test an APPC/MVS transaction program.

Known:

v The TLC55.APPCTP.LOAD(myprog) data set contains the load module for the

transaction program to be tested.

v MAIL is the transaction program name that the inbound allocate request will try to

allocate.
test appctp.load(myprog) tp(’MAIL’) keeptp

Note: Because the LU keyword is not specified, TEST uses the base LU for

testing. Also, the transaction program and its remaining conversations are

not cleaned up by TEST when TEST terminates because the KEEPTP word

is specified. See z/OS TSO/E Programming Guide, for more information

about testing an APPC/MVS transaction program.

Example 7

Operation: Test an APPC/MVS transaction program with a specific LU.

Known:

v The TLC55.APPCTP.LOAD(myprog) data set contains the load module for the

transaction program to be tested.

v MAIL is the transaction program name that the inbound allocate request will try to

allocate.

v LUA is specified as the LU on which the transaction program is to be tested.
test appctp.load(myprog) tp('MAIL') lu('LUA')

TEST Command

286 z/OS V1R9.0 TSO/E Command Reference

Note: LUA is the LU used for testing. Also, the transaction program and its

remaining conversations are cleaned up by TEST when TEST terminates

because the KEEPTP keyword is not specified. See z/OS TSO/E

Programming Guide, for more information about testing an APPC/MVS

transaction program.

TEST subcommands (overview)

The following are TSO/E commands you can use in the TEST environment:

ALLOCATE EXEC LISTALC LISTDS RENAME SUBMIT

ATTRIB HELP LISTBC PROFILE SEND TERMINAL

CANCEL LINK LISTCAT PROTECT STATUS UNALLOC (FREE)

The preceding commands are described with the TEST subcommands in

alphabetical order. For a complete description of the syntax and function of those

TSO/E commands that you can use in the TEST environment, see the

corresponding TSO/E command.

Use the various TEST subcommands to perform the following basic functions:

v Execute the program from its starting address or from any address within the

program.

v Display selected areas of the program as they currently appear in virtual storage,

or display the contents of any of the registers. With the exception that access

registers cannot be specified for indirect addressing or address expressions, you

can use access registers as you need to general registers.

v Interrupt the program at specified locations. After you have interrupted the

program, you can display areas of the program or any of the registers, or you

can issue other subcommands of TEST to be executed before returning control

to the program being tested.

v Change the contents of specified program locations in virtual storage or the

contents of specific registers.

For a discussion on how to use these basic functions, see z/OS TSO/E

Programming Guide. The subcommands of the TEST command and the TSO/E

commands you can use in the TEST environment are:

 Table 52. Subcommands and functions of the TEST command

ALLOCATE Dynamically allocates the data sets required by a program intended

for execution.

AND Performs a logical AND operation on data in two locations, placing

the results in the second location specified.

ASSIGNMENT OF

VALUES(=)

Modifies values in virtual storage and in registers.

AT Establishes breakpoints at specified locations.

ATTRIB Builds a list of attributes for non-VSAM data sets, which are to be

dynamically allocated.

CALL Initializes registers and initiates processing of the program at a

specified address using the standard subroutine linkage.

CANCEL Halts processing of batch jobs submitted for the terminal.

COPY Moves data.

DELETE Deletes a load module from virtual storage.

DROP Removes symbols established by the EQUATE command from the

symbol table of the module being tested.

END Terminates all operations of the TEST command and the program

being tested.

TEST Command

Chapter 1. TSO/E commands and subcommands 287

Table 52. Subcommands and functions of the TEST command (continued)

EQUATE Adds a symbol to the symbol table and assigns attributes and a

location to that symbol.

EXEC Executes a CLIST or REXX exec.

FREEMAIN Frees a specified number of bytes of virtual storage.

GETMAIN Acquires a specified number of bytes of virtual storage for use by

the program being processed.

GO Restarts the program at the point of interruption or at a specified

address.

HELP Lists the subcommands of TEST and explains their function, syntax,

and operands.

LINK Invokes the binder or the linkage editor service program.

LIST Displays the contents of a virtual storage area or registers.

LISTALC Displays a list of the names of data sets allocated during the

current TSO/E session.

LISTBC Displays a listing of the contents of the broadcast data set or a user

log data set, which contains messages of general interest

(NOTICES) and messages directed to a particular user (MAIL).

LISTCAT Lists catalog entries by name or entry type; lists selected fields for

each entry.

LISTDCB Lists the contents of a data control block (DCB). You must specify

the address of the DCB.

LISTDEB Lists the contents of a data extent block (DEB). You must specify

the address of the DEB.

LISTDS Displays attributes of specific data sets at the terminal.

LISTMAP Displays a map of the user’s virtual storage.

LISTPSW Displays a program status word (PSW).

LISTTCB Lists the contents of the current task control block (TCB). You can

specify the address of another TCB.

LISTVP Displays the partial sum number and the vector section size of a

vector machine.

LISTVSR Displays the vector status register (VSR).

LOAD Loads a program into virtual storage for execution.

OFF Removes breakpoints.

OR Performs a logical OR operation on data in two locations, placing

the results in the second location specified.

PROFILE Establishes, changes, or lists the user profile.

PROTECT Controls unauthorized access to a non-VSAM data set.

QUALIFY Establishes the starting or base location for resolving symbolic or

relative addresses; resolves identical external symbols within a

program.

RENAME Changes the name of a non-VSAM cataloged data set or a member

of a partitioned data set (PDS) or creates an alias for a member of

a PDS.

RUN Terminates TEST and completes execution of the program.

SEND Sends a message to another terminal user or to the system

operator.

SETVSR Sets fields in the vector status register.

STATUS Displays status of batch jobs at terminal.

SUBMIT Submits one or more batch jobs for processing.

TERMINAL Defines the operating characteristics for the terminal being used.

UNALLOC Frees data sets under TSO/E TEST. Because FREE is an alias for

the FREEMAIN subcommand, use UNALLOC to free files under

TEST.

TEST Subcommands (Overview)

288 z/OS V1R9.0 TSO/E Command Reference

Table 52. Subcommands and functions of the TEST command (continued)

WHERE Displays the virtual address of a symbol or entry point, or the

address of the next executable instruction. WHERE can also be

used to display the module and CSECT name and the

displacement into the CSECT corresponding to an address.

TEST—ALLOCATE command

Use the ALLOCATE command to dynamically allocate the data sets required by a

program intended for execution. For a description of the ALLOCATE command

syntax and function, see the “ALLOCATE command” on page 17.

TEST—AND subcommand

Use the AND subcommand to perform a logical AND operation on data or

addresses from:

v One virtual storage address to another

v One general register to another

v A general register to virtual storage

v Virtual storage to a general register

v An access register to virtual storage

v Virtual storage to an access register

v One access register to another.

The AND subcommand can be used to:

v Alter the contents of the general registers.

v AND an entire data field with another.

TEST—AND subcommand syntax

��

AND

address_1

address_2

4

LENGTH(

)

integer

 NOPOINTER

POINTER

�

�
ARFROM(register_number)

ALETFROM(alet_value)

ARTO(register_number)

ALETTO(alet_value)

 ��

TEST—AND subcommand operands

address_1

specifies the location of data that is to be ANDed with data pointed to by

address_2.

 If you do not specify POINTER and there is a breakpoint in the data pointed to

by address_1, the TSO/E TEST processor terminates the AND operation.

address_2

specifies the location of the data that is to be ANDed with data pointed to by

address_1. When the AND operation is complete, the result is stored at this

location.

 You can specify address_1 and address_2 as:

TEST Subcommands (Overview)

Chapter 1. TSO/E commands and subcommands 289

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v A general register

v An entry name (preceded by a period)

v An access register.

ARTO(register_number)

specifies that the location of the data pointed to by address_2 is in an alternate

address/data space referred to by an access register. Valid access register

numbers are 0 through 15. The operands ARTO and ALETTO (or ALTO) are

mutually exclusive.

ARFROM(register_number)

specifies that the location of the data pointed to by address_1 is in an alternate

address/data space referred to by an access register. Valid access register

numbers are 0 through 15. The operands ARFROM, ALETFROM, and

POINTER are mutually exclusive.

ALETTO(alet_value) | ALTO(alet_value)

specifies that the location of the data pointed to by address_2 is in an alternate

address/data space. The ALETTO value may be from 1 to 8 hexadecimal

characters. The operands ALETTO and ARTO are mutually exclusive.

ALETFROM(alet_value) | ALFROM(alet_value)

specifies that the location of the data pointed to by address_1 is in an alternate

address/data space. The ALETFROM value may be from 1 to 8 hexadecimal

characters. The operands ALETFROM, ARFROM and POINTER are mutually

exclusive.

LENGTH(integer) | LENGTH(4)

specifies the length, in decimal, of the field to be copied. If an integer is not

specified, LENGTH defaults to 4 bytes. The maximum length is 256 bytes.

POINTER

specifies address_1 is to be validity checked to see that it does not exceed

maximum virtual storage size. address_1 is then treated as an immediate

operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an

address converted to its hexadecimal equivalent). When using the POINTER

operand, do not specify a general register as address_1. The POINTER

operand and the operands ARFROM and ALETFROM are mutually exclusive.

NOPOINTER

specifies address_1 is to be treated as an address. If neither POINTER nor

NOPOINTER is specified, NOPOINTER is the default.

 The AND subcommand treats the 16 general registers as contiguous fields. The

user can AND 10 bytes from general register 0 to another location as follows:

and 0R 80060. length(10)

The AND subcommand ANDs the 4 bytes of register 0, the 4 bytes of register 1,

and the high-order 2 bytes of register 2 to virtual storage beginning at location

80060. When a register is specified as address_1, the maximum length of data that

is ANDed is the total length of the general registers or 64 bytes.

TEST—AND Subcommand

290 z/OS V1R9.0 TSO/E Command Reference

TEST—AND subcommand examples

Example 1

Operation: AND two full words of data each in a virtual storage location placing the

result in the second location.

Known:

v The starting address of the data to be used as the first operand: 80680

v The starting address of the data to be used as the second operand and the

location of the result: 80690
and 80680. 80690. length(8)

Example 2

Operation: AND the contents of two registers, placing the result in the second

register specified.

Known:

v The register which contains the data specified as the first operand: 10

v The register which contains data specified as the second operand and the result:

5
and 10r 5r

Example 3

Operation: Turn off the high-order bit of a register.

Known:

v The AND value: X'7F'

v The register: 1
and 7F. 1r l(1) pointer

Note: Specifying the pointer operand causes 7F to be treated as an immediate

operand and not as an address.

Example 4

Operation: AND the contents of an area pointed to by a register into another area.

Known:

v The register which points to the area that contains the data to be ANDed: 14

v The virtual storage location which is to contain the second operand and result:

80680

v The length of the data to be ANDed: 8 bytes
and 14r% 80680. l(8) nopoint

Example 5

Operation: AND a fullword with X'7F' into the storage where general register 3

points in the alternate address/data space referred to by the ALET 00010004.

and 7f. 3r? pointer aletto(00010004)

Assignment of values function of TEST

Use the assignment function to change:

v The contents of specified program locations in virtual storage

v The contents of specific registers

v The contents of storage in an alternate address/data space.

TEST—AND Subcommand

Chapter 1. TSO/E commands and subcommands 291

When processing is halted at a breakpoint or before execution is initiated, you can

modify values in virtual storage and in registers. This function is implicit; that is, you

do not enter a subcommand name. The system performs the function in response

to operands that you enter.

Syntax of values function of TEST

��

address=data_type

'value'

�

,data_type

'value'

�

�
ALET(alet_value)

AR(register_number)

 ��

Operands of values function of TEST

address

specifies the location that you want to contain a new value. You can specify

address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period)

v A general register

v A floating point register

v A vector register

v A vector register element

v An access register

v An alternate address/data space

v The vector mask register.

data_type ‘value’[, data_type ‘value’,...]

specifies the type of data and the value that you want to place in the specified

location. If you want to specify more than one data_type, enclose the list in

parentheses, for example, (data_type ’value’,data_type ’value’). You

indicate the type of data by one of the following codes:

Code Type of data

Maximum length

(bytes) * Storage boundary

Data types must begin on

specified boundary for a

virtual storage address

C Character One line of input,

continued lines

permitted

C-byte

X Hexadecimal 64 X-byte

B Binary 64 B-byte

H Fixed point binary (halfword) 6 H-halfword

F Fixed point binary (fullword) 11 F-fullword

E Floating point (single precision) 13 E-fullword

Assignment of Values Function of TEST

292 z/OS V1R9.0 TSO/E Command Reference

Code Type of data

Maximum length

(bytes) * Storage boundary

D Floating point (double precision) 22 D-doubleword

P Packed decimal 32 P-byte

Z Zoned decimal 17 Z-byte

A Address constant 11 A-fullword

S Address (base + displacement) 8 S-halfword

Y Address constant (halfword) 6 Y-halfword

* All characters within the quotation marks are included in the length.

Following is a list of valid entries and syntax for data type:

C ‘character value’

X ‘hexadecimal value’

B ‘binary value’

H ‘[±] decimal value’

 The minimum value for H-type is -32768 and the maximum value is 32767.

F ‘[±] decimal value’

 The minimum value for F-type is -2147483648 and the maximum value is

2147483647.

E ‘[+] decimal value [E[+] decimal exponent]’

 A maximum of eight digits is allowed for the decimal value and a maximum

of two digits is allowed for the decimal exponent.

D ‘[+] decimal value [E[+] decimal exponent]’

 A maximum of 17 digits is allowed for the decimal value and a maximum of

two digits is allowed for the decimal exponent.

P ‘[+] decimal value’

 A maximum of 31 digits is allowed.

Z ‘[+] decimal value’

 A maximum of 16 digits is allowed.

A ‘[±] decimal value’

 The minimum decimal value is -2147483648 and the maximum decimal

value is 2147483647.

S ‘decimal value(register number)’

 The decimal value can be from 0 to 4095 and the register number must be

from 0 to 15 (decimal form).

Y ‘[+] decimal value’

 The decimal value may be from 0 to 32767.

You include your data following the code. Your data must be enclosed within

apostrophes. Any single apostrophes within your data must be coded as two single

apostrophes. Character data can be entered. If necessary, all other data types will

be translated into uppercase.

A list of data can be specified by enclosing the list in parentheses. The data in the

list is stored at the beginning of the location specified by the address operand.

Assignment of Values Function of TEST

Chapter 1. TSO/E commands and subcommands 293

Values assigned to general registers and access registers are placed in registers

right-justified and padded with binary zeroes.

When a virtual storage address is assigned a list of data_type values, the address

must reside on the appropriate boundary for the specified data_type of the first

value. Storage bytes for subsequent data_type values will be skipped to align data

on the appropriate boundary for the data type requested.

If the length of the value you assign to the vector mask register is greater than the

length of the vector mask register, an error message is issued. If the length of the

value is shorter than the vector mask register, the value is placed in the vector

mask register left-justified, and the remaining bits are unchanged.

The following restrictions apply to general registers, floating-point registers, vector

registers, access registers and the vector mask register.

1. Specify only one data_type for floating-point registers. Additional data_types are

ignored.

2. Assign only X or E data_types to single precision floating-point registers.

3. Assign only X, F, or E data_types to single precision vector registers.

4. Assign only X or D data_types to double precision floating-point registers.

5. Assign only X or D data_types to double precision vector registers.

6. With the exception of the D-type of data, general registers and access registers

can be assigned any data_type

7. Assign only X or B data_types to the vector mask register.

When a general register, floating point register, vector register, or vector register

element is assigned a list of data_type‘values’, the first value is assigned to the

specified register or register element. Subsequent data_type values are assigned to

contiguous higher-numbered registers or register elements. If register 15 is reached

and data_type values remain, the values are wrapped around to register 0 and

subsequent registers, if needed. For more information about programming

considerations for using the vector registers, see z/OS TSO/E Programming Guide.

If data is assigned to a storage area that contains a breakpoint, the breakpoint is

removed and a warning message is displayed at the terminal.

ALET(alet_value)

specifies the alternate address/data space where you want to change storage.

You can specify from 1 to 8 hexadecimal characters to represent the alet_value.

AR(register_number)

specifies the access register that contains the alet to be used to determine

where you want to change storage. Valid access register numbers are 0

through 15.

Examples of values function of TEST

Example 1

Operation: Insert a character string at a particular location in virtual storage.

Known:

v The address is a symbol: INPOINT

v The data: January 1, 1985
inpoint=c’january 1, 1985’

Assignment of Values Function of TEST

294 z/OS V1R9.0 TSO/E Command Reference

Example 2

Operation: Insert a binary number into a register.

Known:

v The number of the register: register 6

v The data: 0000 0001 0110 0011
6r=b’0000000101100011’

Example 3

Operation: Initialize registers 0 through 3 to zeroes and register 15 to 4.

15R=(x’4’,x’0’,x’0’,x’0’x’0’)

Note: The sixteen (16) general registers are treated as contiguous fields with

register 0 immediately following register 15.

Example 4

Operation: Assign a new base and displacement for an instruction that was found

to be in error.

Known:

v LA instruction at +30 is X'41309020'. In this instruction, the current base register

is 9 and the displacement is a decimal value of 32 (hexadecimal value of 20).

The base register should be 10 and the decimal displacement should be 98

(hexadecimal value of 62).
+32=S’98(10)’

After this assignment, the instruction at +30 is X'4130A062'.

Example 5

Operation: Insert a number in packed format at a particular address in virtual

storage.

Known:

v Absolute address: C3D41, decimal value to be packed is -1038.
c3d41.=p’-1038’

Example 6

Operation: Set the entire contents of the vector register 1 to hexadecimal zeros.

1v(*)=X'00000000'

Example 7

Operation: Set the tenth element in vector register 1 to decimal 33.

1v(10)=f'33'

Example 8

Operation: Set elements 3 and 4 of vector register 3 to X'00' and X'02'.

3v(3)=(X'00',X'02')

Example 9

Operation: Set the first element of vector registers 0 and 1 to the double precision

floating point value of +33E+2.

0w(1)=d'+33E+2'

Assignment of Values Function of TEST

Chapter 1. TSO/E commands and subcommands 295

Example 10

Operation: Assign the value 100 to the four bytes at the address pointed to by

register 9. The storage for addressing is in the address space referred to by the

ALET value 9E00.

9r?=F’100’ALET(9E00)

Example 11

Operation: Set the contents of access register 7 to zeros.

7a=x’00000000’

Example 12

Operation: Set the vector mask register to the hexadecimal value 046C471F.

0M=x’46C471F’

TEST—AT subcommand

Use the AT subcommand to establish breakpoints where processing is to be

temporarily halted so that you can examine the results of execution up to the point

of interruption. Processing is halted before the instruction at the breakpoint is

executed.

If you enter the TEST command with any operands, a pseudo or automatic

breakpoint is established at +0 for the problem program being invoked under TEST.

Therefore, do not specify AT +0.

If you set a breakpoint following a fullscreen TPUT macro and preceding a TGET

macro, the fullscreen message is overlaid by the TEST line mode message

(IKJ57024I). For more information, see z/OS TSO/E Programming Guide.

You cannot establish a breakpoint at:

v The target of an execute instruction or the execute instruction itself.

v An instruction that is to be modified by the execution of other in-line code before

the execution of the breakpoint.

v A user-written SVC exit.

v An instruction that other code depends upon to be the same. See “Example 7”

on page 299.

For some instructions, the AT subcommand establishes a single pass breakpoint

that is removed automatically after the breakpoint hits. These instructions include:

v all branch relative instructions (such as, BRC, BRAS, or BRCT).

v all space-switching instructions (such as, PC, SAC, SACF, SSAR, PT, or PR).

v any instructions that save the current PSW address except BAL, BALR, BAS,

BASR, BSM, or BASSM.

A single pass breakpoint is removed automatically during execution of the GO

subcommand. After resuming execution at the breakpoint, the breakpoint is no

longer in effect until you establish it again by using the AT subcommand . If you

want to establish the breakpoint, you must use the AT subcommand after you issue

the GO subcommand, not before.

Assignment of Values Function of TEST

296 z/OS V1R9.0 TSO/E Command Reference

TEST—AT subcommand syntax

�� AT

�

 address

:address

,

(

address

)

:address

�

(

subcommand

)

 �

�

COUNT(integer)

 NODEFER

DEFER

 NOTIFY

NONOTIFY

TITLE(

'text'

)

��

TEST—AT subcommand operands

address

specifies a location that is to contain a breakpoint. The address must be on a

halfword boundary and contain a valid op code.

address:address

specifies a range of addresses that are to contain breakpoints. Each address

must be on a halfword boundary. A breakpoint is established at each instruction

between the two addresses. When a range of addresses is specified,

assignment of breakpoints halts when a not valid instruction is encountered.

(address)

specifies several addresses that are to contain breakpoints. Each address must

be on a halfword boundary. The list must be enclosed within parentheses, and

the addresses in the list must be separated by standard delimiters (one or more

blanks or a comma). A breakpoint is established at each address.

 For address, address:address, (address), specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

subcommands

specifies one or more subcommands to be executed when the program is

interrupted at the indicated location. If you specify more than one subcommand,

the subcommands must be separated by semicolons. The list cannot be longer

than 255 characters. If a CLIST is executed as part of the subcommand list

the results of the execution may not occur in the expected order.

Note: If an OFF subcommand in the list removes the breakpoint for which a list

is specified, all remaining subcommands in that list are ignored.

COUNT(integer)

specifies that processing is not to be halted at the breakpoint until it has been

encountered the specified number of times. This operand is directly applicable

to program loop situations where an instruction is executed several times.

Processing is halted each time the breakpoint has been encountered the

number of times specified for the integer operand. The integer specified cannot

exceed 65,535.

TEST—AT Subcommand

Chapter 1. TSO/E commands and subcommands 297

NODEFER

specifies the breakpoint is to be inserted into the program now in virtual

storage. This is the default value if both DEFER and NODEFER are omitted.

DEFER

specifies the breakpoint is to be established in a program that is not yet in

virtual storage. The program to contain the breakpoint is brought in as a result

of a LINK, LOAD, ATTACH, or XCTL macro instruction by the program being

tested. When you specify this operand, you must qualify the address of the

breakpoint:

MODULENAME.ENTRYNAME.RELATIVE

or

MODULENAME.ENTRYNAME.SYMBOL

All breakpoint addresses listed in an AT subcommand with the DEFER operand

must refer to the same load module.

NOTIFY

specifies that if the breakpoint is encountered, it will be identified at the

terminal. NOTIFY is the default.

NONOTIFY

specifies that if the breakpoint is encountered, it will not be identified at the

terminal.

TITLE(‘text’)

specifies from 1 to 50 characters of text displayed following the word AT

whenever the tested program stops at the breakpoint associated with that text.

The text is intended to serve as a meaningful identification of the instruction

address at which the program stops. It is used instead of an address. If

NONOTIFY is specified, nothing is displayed.

 A list of addresses can be associated with the same text and the text is

displayed whenever the associated breakpoint is reached. If a range is specified

and TITLE (‘text’) is listed as an operand, the text is displayed in the form:

‘text_string’ + displacement. Displacement is the hexadecimal offset at the

breakpoint encountered from the beginning of the range.

Note: If your program is running in supervisor state or in a PSW protection key

less than 8, breakpoints are ignored.

TEST—AT subcommand examples

Example 1

Operation: Establish breakpoints at each instruction in a section of the program

that is being tested.

Known:

v The addresses of the first and last instructions of the section that you want to

test: LOOPA EXITA

v The subcommands to be executed are: LISTPSW, GO
at loopa:exita (listpsw;go)

Example 2

Operation: Establish breakpoints at several locations in a program.

Known:

TEST—AT Subcommand

298 z/OS V1R9.0 TSO/E Command Reference

v The addresses for the breakpoints: +8A LOOPB EXITB
at (+8A loopb exitb)

Example 3

Operation: Establish a breakpoint at a location in a loop. The address of the

location is contained in register 15. You only want to have an interruption every

tenth cycle through the loop. When the interruption occurs, you want a meaningful

identification at the breakpoint.

Known:

v The address for the breakpoint: 15R%
at 15r% count(10) title(’entry after 10 loops’)

Example 4

Operation: Establish a breakpoint for a program that is not presently in virtual

storage.

Known:

v The name of the load module: CALCULAT

v The CSECT name: INTEREST

v The symbolic address for the breakpoint: TOTAL
at calculat.interest.total defer

Example 5

Operation: Have the following subcommands executed when the breakpoint at TAC

is reached: LISTTCB PRINT(TCBS), LISTPSW, and GO CALCULAT

at tac (listtcb print(tcbs);listpsw;go calculat)

Example 6

Operation: Request that the following subcommands be executed when the

breakpoint at symbol NOW is reached: LISTMAP, LISTTCB, OFF NOW, AT +32,

and GO.

at now (listmap;listtcb;off now;at +32;go)

The last two subcommands will not be executed because the breakpoint (NOW)

and its subcommand list will have been removed.

Example 7

Operation: Do not set a breakpoint at an instruction that other code depends upon

to be unchanged.

 WAIT ECB=ECBX, LONG=YES

0000 4110 C020 LA 1,ECBX load parameter reg. 1

0004 4100 0001 LA 0,1(0,0) count omitted, 1 used

0008 0780 BCR 8,0 gives an inline ’80’

000A BF08 C009 ICM 0,8,*-1 insert into hi-byte

000E 0A01 SVC 1 link to wait routine ...
0020 ECBX DS F

In this assembler coding example, the instruction at +A causes the high-order byte

of register 0 to contain an ‘80’. Inserting a breakpoint at +8 causes the instruction at

+8 to replace the inline ‘80’ produced by the WAIT macro with an SVC 97.

TEST—AT Subcommand

Chapter 1. TSO/E commands and subcommands 299

TEST—ATTRIB command

Use the ATTRIB command to build a list of attributes for non-VSAM data sets that

are to be dynamically allocated. For a description of the ATTRIB command syntax

and function, see the “ATTRIB command” on page 62.

TEST—CALL subcommand

Use the CALL subcommand to initiate processing at a specified address and to

initialize registers 1, 14, and 15. You can pass parameters to the program that is to

be tested.

 CAUTION:

The contents of registers 1, 14, and 15 are altered by the use of the CALL

subcommand. To save the contents of these registers, use the COPY

subcommand of TEST (see Example 2 and Example 3 under “TEST—COPY

subcommand” on page 302).

The CALL subcommand of TEST places the return address of the tested program in

register 14. The high-order bit of register 14 is set to reflect the addressing mode of

the tested program.

TEST—CALL subcommand syntax

�� CALL address

�

PARM(

address

)

VL

RETURN(address)
 �

�
RESUME

SWITCH

AMODE(

)

24

31

ASCMODE

(

AR

)

PRIMARY

 ��

TEST—CALL subcommand operands

address

specifies the address where processing is to begin. Register 15 contains this

address when the program under test begins execution. You can specify

address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

PARM(address)

specifies one or more addresses that point to data to be used by the program

being tested. The list of addresses is expanded to fullwords and placed into

contiguous storage. Register 1 contains the address of the start of the list. If

PARM is omitted, register 1 points to a fullword that contains the address of a

halfword of zeroes.

TEST—ATTRIB Command

300 z/OS V1R9.0 TSO/E Command Reference

VL

specifies the high-order bit of the last fullword of the list of addresses pointed to

by general register 1 is to be set to one.

RETURN(address)

specifies on completion of execution, the called program returns control to the

address in register 14. The high-order bit of register 14 reflects the addressing

mode of the tested program before the issuance of the CALL subcommand. If

RETURN is omitted, register 14 contains the address of a breakpoint

instruction.

RESUME

specifies upon completion of execution, the called program returns control to

the address of the last breakpoint before the CALL.

AMODE [(24 | 31 | SWITCH)]

specifies the addressing mode in which the called program begins execution. If

AMODE(SWITCH) is specified, the called program continues execution in the

addressing mode that is non-current when CALL is issued. You can determine

the current addressing mode by issuing the LISTPSW command. If AMODE is

not specified, there is no change in addressing mode.

ASCMODE(AR | PRIMARY)

specifies the PSW mode in which the called program executes. If you specify

ASCMODE(PRIMARY), the PSW mode is set to execute the program using the

primary address space control mode (in primary mode). When ASCMODE(AR)

is specified, the PSW is set to execute the program in AR mode.

TEST—CALL subcommand examples

Example 1

Operation: Initiate execution of the program being tested at a particular location.

Known:

v The starting address: +0A

v The addresses of data to be passed: CTCOUNTR LOOPCNT TAX
call +0a parm(ctcountr loopcnt tax)

Note: The following message is issued after completion of the called routine:

’IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+’

This message is then issued because no return address was specified. If GO is

now specified without an address, the TEST session is terminated.

Example 2

Operation: Initiate execution at a particular location.

Known:

v The starting address: STARTBD

v The addresses of data to be passed: BDFLAGS PRFTTBL COSTTBL ERREXIT

v Set the high-order bit of the last address parameter to 1 so that the program can

tell the end of the list. After execution, control is to be returned to: +24A
call startbd parm(bdflags prfttbl costtbl errexit)-

vl return(+24a)

Example 3

Operation: Initiate execution at label COMPUTE and have execution begin at label

NEXT when control is returned by register 14.

TEST—CALL Subcommand

Chapter 1. TSO/E commands and subcommands 301

call compute return(next)

TEST—CANCEL command

Use the CANCEL command to halt processing of batch jobs submitted from the

terminal. For a description of the CANCEL command syntax and function, see the

“CANCEL command” on page 74.

TEST—COPY subcommand

Use the COPY subcommand to transfer data or addresses from:

v One storage address to another

v One general register to another

v A general register to virtual storage

v Virtual storage to a general register

v An access register to virtual storage

v Virtual storage to an access register

v One access register to another.

In addition, you can use the COPY subcommand to:

v Save or restore the contents of the general registers

v Propagate the value of a byte throughout a field

v Move an entire data field from one location to another

TEST—COPY subcommand syntax

��

COPY

C

address_1

address_2

4

LENGTH(

integer

)

 NOPOINTER

POINTER

�

�
ARFROM(register_number)

ALETFROM(alet_value)

ARTO(register_number)

ALETTO(alet_value)

 ��

TEST—COPY subcommand operands

address_1

specifies a location that contains data to be copied.

address_2

specifies a location that receives the data after it is copied.

 You can specify address_1 and address_2 as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v A general register

v An access register.

ARFROM(register_number)

specifies that the location of the data pointed to by address_1 is in an alternate

TEST—CALL Subcommand

302 z/OS V1R9.0 TSO/E Command Reference

address/data space referred to by the specified access register. Valid access

register numbers are 0 through 15. The operands ARFROM, ALETFROM, and

POINTER are mutually exclusive.

ALETFROM(alet_value) | ALFROM(alet_value)

specifies that the location of the data pointed to by address_1 is in an alternate

address/data space. The ALETFROM value may be from 1 to 8 hexadecimal

characters. The operands ALETFROM, ARFROM, and POINTER are mutually

exclusive.

ARTO(register_number)

specifies that the location of the data pointed to by address_2 is in an alternate

address/data space referred to by an access register. Valid access register

numbers are 0 through 15. The operands ARTO and ALETTO (or ALTO) are

mutually exclusive.

ALETTO(alet_value) | ALTO(alet_value)

specifies that the location of the data pointed to by address_2 is in an alternate

address/data space. The ALETTO value may be from 1 to 8 hexadecimal

characters. The operands ALETTO and ARTO are mutually exclusive.

LENGTH(integer) | LENGTH(4)

specifies the length, in decimal, of the field to be copied. If an integer is not

specified, LENGTH defaults to 4 bytes. The maximum length is 65,535 bytes in

a storage-to-storage copy operation and 64 bytes when a register is specified.

POINTER

specifies address_1 is to be validity checked to see that it does not exceed

maximum virtual storage size. address_1 is then treated as an immediate

operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an

address will be converted to its hexadecimal equivalent) and transferred into the

location specified by address_2. When using the POINTER operand, do not

specify a general register as address_1. POINTER and the operands ARFROM

and ALETFROM are mutually exclusive.

NOPOINTER

specifies address_1 is to be treated as an address, not as an immediate

operand. NOPOINTER is the default.

 The COPY subcommand treats the 16 general registers as contiguous fields. You

can specify that 10 bytes be moved from general register 0 to another location.

copy 0r 80060. length(10)

The COPY subcommand moves the 4 bytes of register 0, the 4 bytes of register 1,

and the high-order 2 bytes of register 2 to virtual storage beginning at location

80060. When a register is specified as address_1, the maximum length of data

transferred is the total length of the general registers or 64 bytes.

When the value of address_2 is one greater than address_1, propagation of the

data in address_1 occurs. When the value of address_2 is more than one greater

than the value of address_1, no propagation occurs.

TEST—COPY subcommand examples

Example 1

Operation: Transfer two full words of data from one virtual storage location to

another.

Known:

TEST—COPY Subcommand

Chapter 1. TSO/E commands and subcommands 303

v The starting address of the data: 80680

v The starting address of where the data is to be: 80685
copy 80680. 80685. length(8)

Example 2

Operation: Copy the contents of one register into another register.

Known:

v The register which contains the data to be copied: 10

v The register which contains the data to be received: 5
copy 10r 5r

Example 3

Operation: Save the contents of the general registers.

Known:

v The first register to be saved: 0

v The starting address of the save area: A0200
c 0r a0200. l(64)

Example 4

Operation: Propagate the value in the first byte of a buffer throughout the buffer.

Known:

v The starting address of the buffer: 80680

v The length of the buffer: 80 bytes
c 80680. 80681. l(79)

Example 5

Operation: Insert a hexadecimal value into the high-order byte of a register.

Known:

v The desired value: X'80'

v The register: 1
copy 80. 1r l(1) pointer

Note: Specifying the pointer operand causes 80 to be treated as an immediate

operand and not as an address.

Example 6

Operation: Insert the entry point of a routine into a virtual storage location.

Known:

v The module name and the entry_point name: IEFBR14.IEFBR14

v The desired virtual storage location: STARTPTR
c iefbr14.iefbr14 startptr p

Example 7

Operation: Copy the contents of an area pointed to by a register into another area.

Known:

v The register which points to the area that contains the data to be moved: 14

v The real storage location which is to contain the data: 80680

v The length of the data to be moved: 8 bytes
c 14r% 80680. l(8) nopoint

TEST—COPY Subcommand

304 z/OS V1R9.0 TSO/E Command Reference

Example 8

Operation: Copy the 72 bytes where register 13 points in the primary address

space to location 1000 in the address space referred to by access register 5.

copy 13r? 1000. arto(5) length(72)

TEST—DELETE subcommand

Use the DELETE subcommand to delete, from virtual storage, a load module that

was loaded by the tested program, or by one of its subtasks.

Use the DELETE subcommand to delete a module that was loaded above or below

16MB by the tested program or by the LOAD subcommand of TEST.

TEST—DELETE subcommand syntax

�� DELETE

DEL
 load_module_name ��

TEST—DELETE subcommand operand

load_module_name

specifies the name of the load module to be deleted. The load name is the

name (which might be an alias) by which the program is known to the system

when it is in virtual storage. The name must not exceed 8 characters.

TEST—DELETE subcommand examples

Example 1

Operation: Delete a load module from virtual storage.

Known:

v The name of the load module: TOTAL
delete total

or

del total

TEST—DROP subcommand

Use the DROP subcommand to remove symbols from the symbol table of the

module being tested. You can only remove symbols that you established with the

EQUATE subcommand or the EQUATE operand of the GETMAIN subcommand.

You cannot remove symbols that were established by the linkage editor. If the

program being tested was assembled with the TEST option and the EQUATE

subcommand was used to override the location and type of the symbol within the

program, then when the DROP subcommand is used to delete that symbol from the

symbol table, the symbol will reflect the original location and type within the

program.

TEST—DROP subcommand syntax

TEST—COPY Subcommand

Chapter 1. TSO/E commands and subcommands 305

�� DROP

�

(

symbol

)

 ��

TEST—DROP subcommand operand

(symbol)

specifies one or more symbols that you want to remove from the symbol table

created by the EQUATE subcommand or the EQUATE operand of the

GETMAIN subcommand. When you specify only one symbol, you do not have

to enclose the symbol within parentheses. However, two or more symbols must

be enclosed by parentheses. If you do not specify any symbols, the entire table

of symbols is removed.

TEST—DROP subcommand examples

Example 1

Operation: Remove all symbols that you have established with the EQUATE

subcommand.

drop

Example 2

Operation: Remove a symbol from the symbol table.

Known:

v The name of the symbol: DATE
drop date

Example 3

Operation: Remove several symbols from the symbol table.

Known:

v The names of the symbols: STARTADD TOTAL WRITESUM
drop (startadd total writesum)

TEST—END subcommand

Use the END subcommand to terminate all functions of the TEST command and the

program being tested.

TEST—END subcommand syntax

�� END ��

The END subcommand does not close an opened data set. Use the GO

subcommand to close an opened data set. Normal exit cleanup procedures should

also be used.

TEST—DROP Subcommand

306 z/OS V1R9.0 TSO/E Command Reference

TEST—EQUATE subcommand

Use the EQUATE subcommand to add a symbol to the symbol table of the module

being tested. This subcommand allows you to establish a new symbol that you can

use to refer to an address or override an existing symbol to reflect a new address

or new attributes. If no symbol table exists, one is created and the specified name

is added to it. A symbol within DSECT can be accessed if the DSECT name is

defined using the EQUATE subcommand. You can also modify the data attributes

(type, length, and multiplicity); use the EQUATE subcommand to modify attributes

of existing equated symbols. The DROP subcommand removes symbols added by

the EQUATE subcommand. Symbols established by the EQUATE subcommand are

defined for the duration of the TEST session only.

TEST—EQUATE subcommand syntax

�� EQUATE

EQ
 symbol address

data_type

ALET(alet_value)

AR(register_number)

 �

�
LENGTH(integer)

MULTIPLE(integer)
 ��

TEST—EQUATE subcommand operands

symbol

specifies the symbol (name) that you want to add to the symbol table so that

you can refer to an address symbolically. The symbol must consist of 1 to 8

alphanumeric characters, the first of which is an alphabetic character.

address

specifies the address is to equate to the symbol that you specified. You can

specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

data_type

specifies the characteristics you want to attribute to the data at the location

given by address. These might be the same as the original characteristics.

Indicate the type of data by one of the following codes:

 Code Type of data Maximum length (bytes)

C Character 256

X Hexadecimal 256

B Binary 256

I Assembler instruction 256

H Fixed point binary (halfword) 8

F Fixed point binary (fullword) 8

E Floating point (single precision) 8

D Floating point (double precision) 8

P Packed decimal 16

Z Zoned decimal 16

TEST—EQUATE Subcommand

Chapter 1. TSO/E commands and subcommands 307

Code Type of data Maximum length (bytes)

A Address constant 4

S Address (base + displacement) 2

Y Address constant (halfword) 2

ALET(alet_value)

specifies the alternate address/data space that the EQUATEd variable can

reference. You can specify from 1 to 8 hexadecimal characters to represent the

alet_value.

AR(register_number)

specifies the access register that contains the alet used to determine the

alternate address/data space that the EQUATEd variable can reference. Valid

access register numbers are 0 through 15.

LENGTH(integer)

specifies the length of the data. The maximum value of the integer is 256. If you

do not specify the length, the following default values apply:

 Type of data Default length (bytes)

C,B,P,Z 1

H,S,Y 2

F,E,A,X 4

D 8

I variable

MULTIPLE(integer)

specifies a multiplicity factor. The multiplicity factor means that one element of

the data appears several times in succession. The number of repetitions is

indicated by the number specified for integer. The maximum value of the integer

is 256.

 If you do not specify any operands, the defaults are:

type - X

multiplicity - 1

length - 4

If both multiplicity and length are specified for data_type I, the multiplicity is ignored.

TEST—EQUATE subcommand examples

Example 1

Operation: Add a symbolic address to the symbol table of the module that you are

testing.

Known:

v The symbol: EXITRTN

v The address: TOTAL+4
equate exitrtn total+4

Example 2

Operation: Change the address and attributes for an existing symbol.

Known:

v The symbol: CONSTANT

v The new address: 1FAA0

TEST—EQUATE Subcommand

308 z/OS V1R9.0 TSO/E Command Reference

v The new attributes: type: C, length: L(8), multiplicity: M(2)
eq constant 1faa0. c m(2) l(8)

Example 3

Operation: Add the symbol NAMES to the symbol table to access a list of 6

names. Each name is 8 characters long.

Known:

v The names are stored one after the other at relative address +12C.
equate names +12c 1(8) m(6) c

Example 4

Operation: Add SYMBOL1 to the symbol table. SYMBOL1 represents the location

3000 in the address/data space referred to via ALET 00010003.

equate symbol1 3000. alet(00010003)

TEST—EXEC command

Use the EXEC command to execute a CLIST or REXX exec. For a description of

the EXEC command syntax and function, see the “EXEC command” on page 130.

Specify only REXX statements in the REXX exec. Specify only TEST subcommands

and CLIST statements in the CLIST. You cannot specify TSO/E commands in the

CLIST or REXX exec until you specify END or RUN to terminate TEST.

TEST—FREEMAIN subcommand

Use the FREEMAIN subcommand to free a specified number of bytes of virtual

storage.

TEST—FREEMAIN subcommand syntax

�� FREEMAIN

FREE
 integer address

0

SP(

integer

)

 ��

TEST—FREEMAIN subcommand operands

integer

specifies the number of decimal bytes of virtual storage to be released.

address

specifies the location of the space to be freed. It must be a multiple of 8 bytes.

 Use the LISTMAP subcommand to help locate previously acquired virtual

storage.

 You can specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

TEST—EQUATE Subcommand

Chapter 1. TSO/E commands and subcommands 309

SP(integer) | SP(0)

specifies the number of the subpool that contains the space to be freed. If you

omit this operand, the default value is subpool zero. The integer must be in the

range 0 through 127.

TEST—FREEMAIN subcommand examples

Example 1

Operation: Free space in virtual storage that was previously acquired by a

GETMAIN macro instruction in the module being tested.

Known:

v The size of the space, in bytes: 500

v The absolute address of the space: 054A20

v The number of the subpool that the space was acquired from: 3
free 500 054a20. sp(3)

Example 2

Operation: Free space in virtual storage that was previously obtained by a

GETMAIN subcommand.

Known:

v The size of the space: 100 decimal bytes

v The address of the space to be freed: X'A4' past the address in register 3

v The space to be freed: in subpool 0
freemain 100 3r%+A4

Example 3

Operation: Free subpool 127.

freemain 0 0. sp(127)

Attention: Do not attempt to free all of subpool 78. If you want to free a portion

of subpool 78, be careful not to free the storage obtained by the TMP. This results

in freeing the TMP’s data areas because subpool 78 is shared. The deletion of the

TMP portion of subpool 78 causes your session to terminate.

You can release an entire subpool by specifying a length of 0, an absolute address

of 0, and a subpool in the range 1-127.

If you specify a non-zero address, the length must also be non-zero.

TEST—GETMAIN subcommand

Use the GETMAIN subcommand to obtain a specified number of bytes of virtual

storage. The GETMAIN subcommand displays the starting address of the virtual

storage obtained.

TEST—GETMAIN subcommand syntax

�� GETMAIN

GET
 integer

0

SP(

integer

)

EQUATE(name)
 �

TEST—FREEMAIN Subcommand

310 z/OS V1R9.0 TSO/E Command Reference

�
LOC

RES

(

)

BELOW

ANY

 ��

TEST—GETMAIN subcommand sperands

integer

specifies the number of bytes, in decimal form, of virtual storage to be obtained.

SP(integer) | SP(0)

specifies the number of a subpool from which the virtual storage is to be

obtained. If you omit this operand, the default value is subpool zero. The integer

must be in the range 0 through 127.

EQUATE(name)

specifies the address of acquired virtual storage is to be equated to the symbol

specified by name and placed in the TEST internal symbol table.

LOC(BELOW)

specifies the virtual and real storage area must be below 16 MB.

LOC(ANY)

specifies the virtual storage area can be anywhere in the virtual storage

addressing range. The actual location (above or below 16 MB) of the virtual

storage area depends on the subpool specified. If the requested subpool is

supported above 16 MB, GETMAIN allocates virtual storage above 16 MB, if

possible.

LOC(RES)

specifies the address of the virtual storage area depends upon the residence of

the next instruction to be executed. If the instruction address in the PSW for the

tested program is below 16 MB, the request is processed as LOC(BELOW). If

the instruction address is above 16 MB, the request is processed as LOC(ANY).

LOC(RES) is the default.

TEST—GETMAIN subcommand examples

Example 1

Operation: Obtain 240 decimal bytes of virtual storage from subpool 0.

getmain 240

Example 2

Operation: Obtain 500 bytes of virtual storage from subpool 3 and equate starting

address to symbolic name AREA.

get 500 sp(3) equate(area)

TEST—GO subcommand

Use the GO subcommand to start or restart program execution from a particular

address. If the program was interrupted for a breakpoint and you want to continue

from the breakpoint, there is no need to specify the address. However, you can

start execution at any point by specifying the address.

TEST—GETMAIN Subcommand

Chapter 1. TSO/E commands and subcommands 311

TSO/E TEST supports single pass breakpoints for some instructions (for example,

BRC, BRAS, and BRCT.) (Refer to the AT subcommand of TEST for more

information about single pass breakpoints.) A single pass breakpoint will be

removed automatically during execution of the GO subcommand of TSO/E TEST.

After resuming execution at the breakpoint, the breakpoint will no longer be in effect

until the user reestablishes it by using the AT subcommand of TSO/E TEST. If the

user desires to reestablish the breakpoint, the breakpoint must be reestablished

after the ’GO’ subcommand has been issued.

TEST—GO subcommand syntax

�� GO

address

AMODE

SWITCH

(

)

24

31

ASCMODE

(

AR

)

PRIMARY

 ��

TEST—GO subcommand operands

address

specifies the address where processing is to begin. You can specify address as:

v A symbolic address

v A relative address

v An absolute address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

When the problem program completes processing, the following message is

displayed at the terminal:

IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+

If you now issue the GO subcommand without specifying an address, the TEST

session is terminated.

AMODE [(24 | 31 | SWITCH)]

specifies the addressing mode in which program execution resumes after the

GO subcommand has been issued. You can specify AMODE without specifying

an address. However, if the word AMODE or any abbreviation of the word

AMODE is defined as a symbolic address, GO AMODE executes as follows:

program execution starts at the last breakpoint and the SWITCH default is

taken.

 If you do not specify AMODE, there is no change in addressing mode.

ASCMODE(AR | PRIMARY)

specifies the PSW mode in which the program executes after the GO command

is issued. If you specify ASCMODE(PRIMARY), the PSW is set to execute the

program using the primary address space control mode (in primary mode).

Specifying ASCMODE(AR) sets the PSW to execute the program in AR mode.

TEST—GO Subcommand

312 z/OS V1R9.0 TSO/E Command Reference

TEST—GO subcommand examples

Example 1

Operation: Begin execution of a program at the point where the last interruption

occurred or initiate execution of a program.

go

Example 2

Operation: Begin execution at a particular address.

go calculat

TEST—HELP command

Use the HELP command to obtain the syntax and function of the TEST

subcommands. For a description of the HELP command syntax and function, see

the “HELP command” on page 154.

TEST—LINK command

Use the LINK command to invoke the binder or the linkage editor service program.

For the description of the LINK command syntax and function, see the “LINK

command” on page 158.

TEST—LIST subcommand

Use the LIST subcommand to display at your terminal or place in a data set the

following:

v The contents of a specified area of virtual storage

v The contents of registers or vector registers

v The contents of access registers

v Data in alternate address/data spaces that is referred to via an access register

v The vector mask register.

TEST—LIST subcommand syntax

�� LIST

L

�

 address

:address

,

(

address

)

:address

data_type

 �

�
ALET(alet_value)

AR(register_number)

LENGTH(integer)

MULTIPLE(integer)
 �

�
PRINT(data_set_name)

 ��

TEST—LIST subcommand operands

address

specifies the location of data that you want displayed at your terminal or placed

into a data set.

TEST—GO Subcommand

Chapter 1. TSO/E commands and subcommands 313

address:address

specifies that you want the data located between the specified addresses

displayed at your terminal or placed into a data set.

(address)

specifies several addresses of data that you want displayed at your terminal or

placed into a data set. The data at each location is retrieved. If the first address

of a range is a register, the second address must also be the same type of

register (floating-point, general, or vector). The list of addresses must be

enclosed within parentheses, and the addresses must be separated by standard

delimiters (one or more blanks or a comma).

 If a range of addresses is specified on LIST and the ending address is in fetch

protected storage, you are prompted (if in PROMPT mode) to reenter the

address. If you want a range of addresses, you must reenter the range, not just

the ending address.

 You can create a load module that contains more than one DSECT or CSECT

within the same symbolic name. When you list an unqualified symbolic address

in a load module, the LIST command displays the area associated with the first

occurrence of the symbol. Use the fully-qualified name,

‘module_name.csect.symbol_name’, to display occurrences other than the first.

 For address, address:address, (address), specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period)

v A general register

v A floating-point register

v A vector register

v A vector register element

v An access register

v The vector mask register.

data_type

specifies the type of data that is in the specified location. Indicate the type of

data using one of the following codes:

 Code Type of data Maximum length (Bytes)

C Character 256

X Hexadecimal 256

B Binary 256

I Assembler instruction 256

H Fixed point binary (halfword) 8

F Fixed point binary (fullword) 8

E Floating point (single precision) 8

D Floating point (double precision) 8

P Packed decimal 16

Z Zoned decimal 16

A Address constant 4

S Address (base + displacement) 2

Y Address constant (halfword) 2

XC Hexadecimal and EBCDIC 256

TEST—LIST Subcommand

314 z/OS V1R9.0 TSO/E Command Reference

All accepted data_types allow the specified address to be aligned on a byte

boundary even though certain data_types cannot be assigned to a byte

boundary. The default for data_type is hexadecimal.

 The XC data_type indicates that you want to display, side-by-side, the

hexadecimal and EBCDIC contents of storage. The contents are displayed in

hexadecimal first, followed by EBCDIC.

 A general register is displayed in decimal format if the F data_type is used.

Otherwise, regardless of the type specified, a general register is displayed in

hexadecimal. Floating-point registers are listed in floating-point format if

data_type is not specified. However, floating-point registers can be listed in

hexadecimal format by using the X data_type. If any data_type other than D, E,

or X is specified for floating-point registers, data_type is ignored and the

register is listed in floating-point format.

 For vector registers, if you do not specify the data_type, then LIST displays

them in floating-point format. You can display vector registers in hexadecimal for

both single (V) and double (W) precision registers. You can also display single

precision (V) registers in fixed-point binary. If you specify another data type,

LIST ignores it. For more information about programming considerations for

using the Vector facility, see z/OS TSO/E Programming Guide.

 Specify 0m to display the vector mask register. It can be displayed in

hexadecimal or binary format.

 Access registers (A) are displayed in decimal if you specify the F data_type.

Otherwise, they are displayed in the default data_type, hexadecimal.

 If an area is to be displayed using the I data_type and the area contains a not

valid op code, only the area up to that not valid op code is displayed.

ALET(alet_value)

specifies that the contents of storage in an alternate address/data space are to

be displayed. You can specify from 1 to 8 hexadecimal characters to represent

the alet_value.

 The alet_value used to reference storage appears at the far right of the display

of storage. If you display storage in the primary address space, the alet_value

is zeros. If you display storage in an alternate address/data space, the

alet_value is the hexadecimal value you specified. ALET and AR are mutually

exclusive.

Note: The alet_value is displayed whenever storage is listed, not only when

you specify the ALET or AR keywords.

AR(register_number)

specifies the access register number used to reference data in an alternate

address/data space. Valid register numbers for AR are 0 through 15.

 The alet_value in the access register used to reference storage appears at the

far right of the display of storage. If you display storage in the primary address

space, the alet_value is zeros. If you display storage in an alternate

address/data space, the alet_value is the hexadecimal value of the data in the

access register. AR and ALET are mutually exclusive.

Note: The alet_value is displayed whenever storage is listed, not only when

you specify the AR or ALET keywords.

LENGTH(integer)

indicates the length, in bytes, of the data that is to be listed. If you use a

TEST—LIST Subcommand

Chapter 1. TSO/E commands and subcommands 315

symbolic address and do not specify LENGTH, the value for the LENGTH

operand is retrieved from the internal TEST symbol table or from the length

associated with a symbol in a program. Otherwise, the following default values

apply:

 Type of data Default length (bytes)

C,B,P,Z 1

H,S,Y 2

F,E,A,X 4

D 8

I variable

XC 4

When the data_type is I, either LENGTH or MULTIPLE can be specified, but not

both. If both are specified, the MULTIPLE operand is ignored, but no error

message is printed.

MULTIPLE(integer)

Use with the LENGTH operand. It gives you the following options:

v The ability to format the data to be listed (see “Example 8” on page 318).

v A way of printing more than 256 bytes at a time. The value you specify for

the integer determines how many lengths or multiples of data_type you want

listed. The value supplied for the integer cannot exceed 256.

For I type data, the value supplied for MULTIPLE defines the number of

instructions to be displayed. If you use a symbolic address and do not specify

either LENGTH or MULTIPLE, the length retrieved from the internal TEST

symbol table or from the program is used and multiplicity is ignored.

PRINT(data_set_name)

specifies the name of a sequential data set to which the data is directed. If you

omit this operand, the data is directed to your terminal.

 The data format is blocked variable-length records. Old data sets with the fixed

standard record format and block size are treated as NEW, if they are being

opened for the first time. Otherwise, they are treated as MOD data sets.

 If PRINT(data_set_name) is specified, use the following table to determine the

format of the output.

 If the data_set_name is not specified within quotation marks, the descriptive

qualifier TESTLIST is added.

If your record type was:

Fixed, fixed blocked, or

undefined Variable or variable-blocked

Then it is changed to

variable-blocked with the

following attributes:

Recordsize

125

Blocksize 1629 Recordsize

125

Blocksize 129

Record and block sizes greater than those specified in the preceding table are

unchanged.

 The specified data set is kept open until:

v The TEST session is ended by a RUN or END subcommand, or

v A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR

subcommand is entered specifying a different PRINT data set. In this case,

the previous data set is closed and the current one is opened.

TEST—LIST Subcommand

316 z/OS V1R9.0 TSO/E Command Reference

Notice that “P” is not a valid truncation for the PRINT operand on the LIST

subcommand because the single letter “P” may be used as a data_type

specifying that the data to be listed is in packed decimal format. See also

“Example 6.”

TEST—LIST subcommand examples

Example 1

Operation: List the contents of floating-point register 2 in single precision.

list 2e

Example 2

Operation: List all of the general registers.

list 0r:15r

Example 3

Operation: List all of the floating-point registers in double precision.

list 0d:6d

Example 4

Operation: List 20 instructions starting with address +3A

list +3a i m(20)

Example 5

Operation: List the contents of an area of virtual storage.

Known:

v The area to be displayed is between labels COUNTERA and DTABLE.

v The data is to be listed in character format for a length of 130 bytes.

v The name of the data set where the data is to be put: MYDATA.DCDUMP.
list countera:dtable

c l(130) m(1) print (’mydata.dcdump’)

Example 6

Operation: List the contents of two words of storage containing packed decimal

numbers, and place the output into a print data set.

Known:

v The area to be displayed starting at X'22FF4' contains two words in packed

decimal format. Each packed decimal number is of a length of four bytes.

v The name of the data set where the listed data is to be placed is

MYDATA.DCDUMP.

v Assume the hexadecimal contents at address X'22FF4' is X'0000135C', and the

hexadecimal contents at X'22FF8' is X'0032767D'.
list 22FF4. p m(2) len(4) print(’mydata.dcdump’)

The following two lines where written to the print data set MYDATA.DCDUMP:

00022FF4. +135

00022FF8. -32767

Example 7

Operation: List the contents of virtual storage at several addresses.

Known:

v The addresses: TOTAL1, TOTAL2, TOTAL3, and ALLTOTAL

TEST—LIST Subcommand

Chapter 1. TSO/E commands and subcommands 317

v Each address is to be displayed in fixed-point binary format in three lines of 3

bytes each.
list (total1 total2 total3 alltotal) f l(3) m(3)

Example 8

Operation: List the first six fullwords in the communications vector table (CVT).

Known:

v The absolute address of the CVT: 10

v The user is operating in TEST mode.

v The data is to be listed in hexadecimal form in six lines of 4 bytes each.

Note: First use the QUALIFY subcommand of TEST to establish the beginning

of the CVT as a base location for displacement values.

qualify 10.%

v TEST: The system response
list +0 l(4) m(6)

The display at your terminal might resemble the following:

+0 00000000

+4 00012A34

+8 00000B2C

+C 00000000

+10 001A0408

+14 00004430

Example 9

Operation: Display the entire contents of vector register 1 in hexadecimal.

list 1v(*) x

Example 10

Operation: Display the fourth element of vector register 1 in fullword fixed point

binary.

list 1v(4) f

Example 11

Operation: Display elements 3 through 20 of vector register 3 in single precision

floating point.

list 3v(3):3v(20)

Example 12

Operation: Display the entire contents of all 16 vector registers in single precision

floating point.

list 0v(*):15v(*)

Example 13

Operation: Display the entire contents of vector register 0 in double precision

floating point.

list 0w(*)

Example 14

Operation: Display elements 5 to 25 of vector register 2 in double precision floating

point.

list 2w(5):2w(25)

TEST—LIST Subcommand

318 z/OS V1R9.0 TSO/E Command Reference

Example 15

Operation: List the contents of storage at address 4AD8 in the address/data space

referred to by access register 4.

list 4ad8. ar(4)

Example 16

Operation: List the contents of storage at the location pointed to by general register

2 in the address/data space referred to by access register 8.

list 2r? ar(8)

Example 17

Operation: List in decimal the contents of storage at the location pointed to by the

contents of the storage pointed to by register 5. The storage for all addressing is in

the address/data space referred to by access register 6.

list 5r?? ar(6) f

Example 18

Operation: List the contents of storage at location 100 in the address/data space

referred to by the ALET value 00010003.

list 100. alet(00010003)

TEST—LISTALC command

Use the LISTALC command to obtain a list of names of the data sets allocated

during the current user session. For a description of the LISTALC command syntax

and function, see the “LISTALC command” on page 171.

TEST—LISTBC command

Use the LISTBC command to obtain a listing of the contents of the broadcast data

set or the user log data set. It contains messages of general interest (NOTICES)

and messages directed to particular users (MAIL).

For a description of the LISTBC command syntax and function, see the “LISTBC

command” on page 174.

TEST—LISTCAT command

Use the LISTCAT command to list catalog entries by name of entry type and

selected fields for each entry. For a description of the LISTCAT command syntax

and function, see the “LISTCAT command” on page 176.

TEST—LISTDCB subcommand

Use the LISTDCB subcommand to list the contents of a data control block (DCB).

You must provide the address of the beginning of the DCB.

You can display the selected fields. The field identification is based on the

sequential access method DCB for direct access. Fifty-two bytes of data are

displayed if the data set is closed. Forty-nine bytes of data are displayed if the data

set is opened.

TEST—LIST Subcommand

Chapter 1. TSO/E commands and subcommands 319

TEST—LISTDCB subcommand syntax

�� LISTDCB address Options ��

Options

�

�

PRINT(data_set_name)

FIELD(

name

)

TEST—LISTDCB subcommand operands

address

specifies the address of the DCB that you want displayed. The address must be

on a fullword boundary. You can specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

FIELD(name)

specifies one or more names of the particular fields in the DCB that you want to

display at your terminal. The segment name is not printed when you use this

operand. If you omit this operand, the entire DCB is displayed.

PRINT(data_set_name)

specifies the name of a sequential data set to which the data is directed. If you

omit this operand, the data is directed to your terminal.

 The data format is blocked variable-length records. Old data sets with the

standard format and block size are treated as NEW, if they are being opened

for the first time. Otherwise, they are treated as MOD data sets.

 If PRINT(data_set_name) is specified, use the following table to determine the

format of the output.

 If the data_set_name is not specified within quotation marks, the descriptive

qualifier TESTLIST is added.

If your record type was:

Fixed, fixed blocked, or

undefined

Variable or variable-blocked

Then it is changed to

variable-blocked with the

following attributes:

Recordsize

125

Blocksize 1629 Recordsize

125

Blocksize 129

Record and block sizes greater than those specified in the preceding table are

unchanged.

 The specified data set is kept open until:

v The TEST session is ended by a RUN or END subcommand, or

TEST—LISTDCB Subcommand

320 z/OS V1R9.0 TSO/E Command Reference

v A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR

subcommand is entered specifying a different PRINT data set. In this case,

the previous data set is closed and the current one is opened.

TEST—LISTDCB subcommand examples

Example 1

Operation: List the RECFM field of a DCB for the program that is being tested.

Known:

v The DCB begins at location: DCBIN
listdcb dcbin field(dcbrecfm)

Example 2

Operation: List an entire DCB.

Known:

v The absolute address of the DCB: A33B4
listdcb a33b4.

TEST—LISTDEB subcommand

Use the LISTDEB subcommand to list the contents of a data extent block (DEB).

You must provide the address of the DEB.

If a copy of the control block is in extended virtual storage, the LISTDEB

subcommand accepts addresses greater than 16 MB, even though the block itself

will always be in virtual storage below 16 MB. Even if an absolute address has

been specified, LISTDEB displays the virtual address before formatting the control

block.

In addition to the 32 byte basic section of the DEB, you can receive up to 16 direct

access device dependent sections of 16 bytes each, until the full length has been

displayed. If you want, you can have only selected fields displayed.

TEST—LISTDEB subcommand syntax

�� LISTDEB address

�

FIELD(

name

)

PRINT(data_set_name)
 ��

TEST—LISTDEB subcommand operands

address

specifies the address is the beginning of the DEB. It must be on a fullword

boundary. You can specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

TEST—LISTDCB Subcommand

Chapter 1. TSO/E commands and subcommands 321

FIELD(name)

specifies one or more names of the particular fields in the DEB that you want to

display at your terminal. If you omit this operand, the entire DEB is listed.

PRINT(data_set_name)

specifies the name of a sequential data set to which the data is directed. If you

omit this operand, the data is directed to your terminal.

 The data format is blocked variable-length records. Old data sets with the

standard format and block size are treated as NEW, if they are being opened

for the first time. Otherwise, they are treated as MOD data sets.

 If PRINT(data_set_name) is specified, use the following table to determine the

format of the output.

 If the data_set_name is not specified within quotation marks, the descriptive

qualifier TESTLIST is added.

If your record type was:

Fixed, fixed blocked, or

undefined

Variable or variable-blocked

Then it is changed to

variable-blocked with the

following attributes:

Recordsize

125

Blocksize 1629 Recordsize

125

Blocksize 129

Record and block sizes greater than those specified in the preceding table are

unchanged.

 The specified data set is kept open until:

v The TEST session is ended by a RUN or END subcommand, or

v A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR

subcommand is entered specifying a different PRINT data set. In this case,

the previous data set is closed and the current one is opened.

TEST—LISTDEB subcommand examples

Example 1

Operation: List the entire DEB for the DCB that is named DCBIN.

Known:

v The address of the DEB is 44 decimal (2C hexadecimal) bytes past the

beginning of the DCB.

v The address of the DEB: DCBIN+2C%
listdeb dcbin+2c%

Example 2

Operation: List the following fields in the DEB: DEBDCBAD and DEBOFLGS

Known:

v The address of the DEB is 44 decimal (2C hexadecimal) bytes past the

beginning of the DCB. The address of the DCB is in register 8.
listdeb 8r%+2c% field(debdcbad,deboflgs)

TEST—LISTDS command

Use the LISTDS command to display attributes of specific data sets at the terminal.

For a description of the LISTDS command syntax and function, see the “LISTDS

command” on page 180.

TEST—LISTDEB Subcommand

322 z/OS V1R9.0 TSO/E Command Reference

TEST—LISTMAP subcommand

Use the LISTMAP subcommand to display a virtual storage map at the terminal.

The map identifies the location and assignment of any storage assigned to the

program.

All storage assigned to the problem program and its subtasks as a result of

GETMAIN requests is located and identified by subpool (0-127). All programs

assigned to the problem program and its subtasks are identified by name, size,

location, and attribute. Storage assignment and program assignment are displayed

by task.

TEST—LISTMAP subcommand syntax

�� LISTMAP

PRINT(data_set_name)
 ��

TEST—LISTMAP subcommand sperands

PRINT(data_set_name)

specifies the name of a sequential data set to which the data is directed. If you

omit this operand, the data is directed to your terminal.

 The data format is blocked variable-length records. Old data sets with the

standard format and block size are treated as NEW, if they are being opened

for the first time. Otherwise, they are treated as MOD data sets.

 If PRINT(data_set_name) is specified, use the following table to determine the

format of the output.

 If the data_set_name is not specified within quotation marks, the descriptive

qualifier TESTLIST is added.

If your record type was:

Fixed, fixed blocked, or

undefined

Variable or variable-blocked

Then it is changed to

variable-blocked with the

following attributes:

Recordsize

125

Blocksize 1629 Recordsize

125

Blocksize 129

Record and block sizes greater than those specified in the preceding table are

unchanged.

 The specified data set is kept open until:

v The TEST session is ended by a RUN or END subcommand, or

v A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR

subcommand is entered specifying a different PRINT data set. In this case,

the previous data set is closed and the current one is opened.

TEST—LISTMAP subcommand examples

Example 1

Operation: Display a map of virtual storage at your terminal.

listmap

TEST—LISTMAP Subcommand

Chapter 1. TSO/E commands and subcommands 323

Example 2

Operation: Direct a map of virtual storage to a data set.

Known:

v The name of the data set: ACDQP.MAP.TESTLIST

v The prefix in the user’s profile: ACDQP
listmap print(map)

TEST—LISTPSW subcommand

Use the LISTPSW subcommand to display a program status word (PSW) at your

terminal.

TEST—LISTPSW subcommand syntax

�� LISTPSW

ADDR(address)

PRINT(data_set_name)
 ��

TEST—LISTPSW subcommand operands

ADDR(address)

specifies the address of a particular PSW. If you do not specify an address, you

receive the current PSW for the program that is executing. You can specify

address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

PRINT(data_set_name)

specifies the name of a sequential data set to which the data is directed. If you

omit this operand, the data is directed to your terminal.

 The data format is blocked variable-length records. Old data sets with the

standard format and block size are treated as NEW, if they are being opened

for the first time. Otherwise, they are treated as MOD data sets.

 If PRINT(data_set_name) is specified, use the following table to determine the

format of the output.

 If the data_set_name is not specified within quotation marks, the descriptive

qualifier TESTLIST is added.

If your record type was:

Fixed, fixed blocked, or

undefined

Variable or variable-blocked

Then it is changed to

variable-blocked with the

following attributes:

Recordsize

125

Blocksize 1629 Recordsize

125

Blocksize 129

Record and block sizes greater than those specified in the preceding table are

unchanged.

 The specified data set is kept open until:

v The TEST session is ended by a RUN or END subcommand, or

TEST—LISTMAP Subcommand

324 z/OS V1R9.0 TSO/E Command Reference

v A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR

subcommand is entered specifying a different PRINT data set. In this case,

the previous data set is closed and the current one is opened.

TEST—LISTPSW subcommand examples

Example 1

Operation: Display the current PSW at your terminal.

listpsw

Example 2

Operation: Direct the input/output old PSW into a data set.

Known:

v The prefix in the user’s profile: ANZAL2

v The address of the PSW (in hexadecimal): 38

v The name of the data set: ANZAL2.PSWS.TESTLIST
listpsw addr(38.) print(psws)

TEST—LISTTCB subcommand

Use the LISTTCB subcommand to display the contents of a task control block

(TCB). You can provide the address of the beginning of the TCB.

If a copy of the control block is in extended virtual storage, the LISTTCB

subcommand accepts addresses greater than 16MB, even though the block itself is

below 16MB in virtual storage. Even if an absolute address is specified, LISTTCB

displays the virtual address of the requested TCB before formatting the control

block.

If you want, you can have only selected fields displayed.

TEST—LISTTCB subcommand syntax

�� LISTTCB

ADDR(address)

�

FIELD(

name

)

 �

�
PRINT(data_set_name)

 ��

TEST—LISTTCB subcommand operands

ADDR(address)

specifies the address must be on a fullword boundary. The address identifies

the particular TCB that you want to display. If you omit an address, the TCB for

the current task is displayed. You can specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

TEST—LISTPSW Subcommand

Chapter 1. TSO/E commands and subcommands 325

FIELD(name)

specifies one or more names of the particular fields in the TCB that you want to

display. If you omit this operand, the entire TCB is displayed.

PRINT(data_set_name)

specifies the name of a sequential data set to which the data is directed. If you

omit this operand, the data is directed to your terminal.

 The data format is blocked variable-length records. Old data sets with the

standard format and block size are treated as NEW, if they are being opened

for the first time. Otherwise, they are treated as MOD data sets.

 If PRINT(data_set_name) is specified, use the following table to determine the

format of the output.

 If the data_set_name is not specified within quotation marks, the descriptive

qualifier TESTLIST is added.

If your record type was:

Fixed, fixed blocked, or

undefined

Variable or variable-blocked

Then it is changed to

variable-blocked with the

following attributes:

Recordsize

125

Blocksize 1629 Recordsize

125

Blocksize 129

Record and block sizes greater than those specified in the preceding table are

unchanged.

 The specified data set is kept open until:

v The TEST session is ended by a RUN or END subcommand, or

v A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR

subcommand is entered specifying a different PRINT data set. In this case,

the previous data set is closed and the current one is opened.

TEST—LISTTCB subcommand examples

Example 1

Operation: Direct a copy of the TCB for the current task into a data set.

Known:

v The prefix in the user’s profile is NAN75.

v The name of the data set: NAN75.TCBS.TESTLIST
listtcb print(tcbs)

Example 2

Operation: Save a copy of some fields of a task’s control block that is not active in

a data set for future information.

Known:

v The symbolic address of the TCB: MYTCB2

v The fields that are being requested: TCBTIO TCBCMP TCBGRS

v The name of the data set: SCOTT.TCBDATA
listtcb addr(mytcb2) field(tcbtio,tcbcmp,tcbgrs)-

print(’scott.tcbdata’)

Example 3

Operation: List the entire TCB for the current task.

listtcb

TEST—LISTTCB Subcommand

326 z/OS V1R9.0 TSO/E Command Reference

TEST—LISTVP subcommand

Use the LISTVP subcommand to display the partial sum number and the vector

section size of a vector machine.

TEST—LISTVP subcommand syntax

�� LISTVP ��

TEST—LISTVP subcommand examples

Example 1

Operation: Determine the vector section size and partial sum number of the vector

machine currently being used.

listvp

The output might look similar to the following:

IKJ57026I VECTOR SYSTEM PARAMETERS

SECTION SIZE: 002568

PARTIAL SUM: 000048

TEST—LISTVSR subcommand

Use the LISTVSR subcommand to display the contents of the vector status register

(VSR).

TEST—LISTVSR subcommand syntax

�� LISTVSR

ADDR(address)

PRINT(data_set_name)
 ��

TEST—LISTVSR subcommand operands

ADDR(address)

specifies the address of a particular vector status register. If you do not specify

an address, you receive the current vector status register for the program that is

executing. You can specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

PRINT(data_set_name)

specifies the name of a sequential data set to which the data is directed. If you

omit this operand, the data is directed to your terminal.

8. This value will differ based on the machine currently used.

TEST—LISTVP Subcommand

Chapter 1. TSO/E commands and subcommands 327

The data format is blocked variable-length records. Old data sets with the

standard format and block size are treated as NEW, if they are being opened

for the first time. Otherwise, they are treated as MOD data sets.

 If PRINT(data_set_name) is specified, use the following table to determine the

format of the output.

 If the data_set_name is not specified within quotation marks, the descriptive

qualifier TESTLIST is added.

If your record type was:

Fixed, fixed blocked, or

undefined

Variable or variable-blocked

Then it is changed to

variable-blocked with the

following attributes:

Recordsize

125

Blocksize 1629 Recordsize

125

Blocksize 129

Record and block sizes greater than those specified in the preceding table are

unchanged.

 The specified data set is kept open until:

v The TEST session is ended by a RUN or END subcommand, or

v A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR

subcommand is entered specifying a different PRINT data set. In this case,

the previous data set is closed and the current one is opened.

TEST—LISTVSR subcommand examples

Example 1

Operation: Display the contents of a vector status register after issuing a

RESTORE VSR instruction (VSRRS):

listvsr

The output might look similar to the following:

VSR LOCATED AT 7FFF9EF8

 RESERVED VMM VCT VIX VIU VCH

 00000000 00000000 0 00127 00127 00000000 00000000

TEST—LOAD subcommand

Use the LOAD subcommand to load a program into real storage for execution.

Use the LOAD subcommand to load a program above or below 16MB virtual

storage based on its RMODE characteristics. If the displayed entry address is

greater than X'7FFFFFFF', the addressing mode is 31-bit. In this case, X'80000000'

must be subtracted from the displayed number to obtain the actual address.

TEST—LOAD subcommand syntax

��

LOAD
 *

data_set_name

(member)

/password

��

TEST—LISTVSR Subcommand

328 z/OS V1R9.0 TSO/E Command Reference

TEST—LOAD subcommand operands

data_set_name

specifies the name of a member of a PDS or a PDSE from which the program

is to be executed. If you do not specify quotation marks around the data set

name, LOAD assumes a suffix of LOAD.

* specifies that the program to be loaded resides in the LPA and the standard

libraries are to be searched (linklist).

(member)

specifies the name of a member of the partitioned data set containing the

module to be loaded. If the member name is not specified, TEMPNAME is

used. If the data_set_name is not specified within quotation marks, the LOAD

qualifier is added.

password

specifies the password for a password protected data set.

TEST—LOAD subcommand examples

Example 1

Operation: Load a program named GSCORES from the data set ATX03.LOAD.

Known:

v The prefix in the user’s profile is ATX03.
load ’atx03.load(gscores)’

or

load(gscores)

Example 2

Operation: Load a module named ATTEMPT from data set ATX03.TEST.LOAD.

Known:

v The prefix in the user’s profile is ATX03.
load ’atx03.test.load(attempt)’

or

load test(attempt)

However, do not specify the following because this results in a search for

ATX03.TEST.load.load:

load test.load(attempt)

Example 3

Operation: Load a module named PERFORM from data set ATX03.TRY.

load ’atx03.try(perform)’

TEST—OFF subcommand

Use the OFF subcommand to remove breakpoints from a program.

TEST—LOAD Subcommand

Chapter 1. TSO/E commands and subcommands 329

TEST—OFF subcommand syntax

�� OFF

�

address

:address

,

(

address

)

:address

 ��

TEST—OFF subcommand operands

address

specifies the location of a breakpoint that you want to remove. The address

must be on a halfword boundary. If no address is specified, all breakpoints are

removed. You can specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

address:address

specifies a range of addresses. All breakpoints in the range of addresses are

removed. See the description of address for a list of valid address types.

(address[,address[,address[,...]]])

specifies the location of several breakpoints that you want to remove. See the

description of address for a list of valid address types.

Note: The list must be in parentheses with each address separated by one or

more blanks or a comma.

TEST—OFF subcommand examples

Example 1

Operation: Remove all breakpoints in a section of a program.

Known:

v The beginning and ending addresses of the section: LOOPC EXITC
off loopc:exitc

Example 2

Operation: Remove several breakpoints located at different positions.

Known:

v The addresses of the breakpoints: COUNTRA +2c 3r%
off (countra +2c 3r%)

Example 3

Operation: Remove all breakpoints in a program.

off

TEST—OFF Subcommand

330 z/OS V1R9.0 TSO/E Command Reference

Example 4

Operation: Remove one (1) breakpoint.

Known:

v The address of the breakpoint is in register 6.
off 6r%

TEST—OR subcommand

Use the OR subcommand to:

v Alter the contents of the general registers.

v OR an entire data field with another.

The OR subcommand performs logical OR data or addresses from:

v One virtual storage address to another

v One general register to another

v A general register to virtual storage

v Virtual storage to a general register

v An access register to virtual storage

v Virtual storage to an access register

v One access register to another.

TEST—OR subcommand syntax

��

OR

address_1

address_2

4

LENGTH(

integer

)

 NOPOINTER

POINTER

�

�
ARFROM(register_number)

ALETFROM(alet_value)

ARTO(register_number)

ALETTO(alet_value)

 ��

TEST—OR subcommand operands

address_1

specifies the location of data that is to be ORed with data pointed to by

address_2.

 If you do not specify POINTER and there is a breakpoint in the data pointed to

by address_1, the TSO/E TEST command processor terminates the OR

operation.

address_2

specifies the location of the data that is to be ORed with data pointed to by

address_1. When the OR operation is complete, the result is stored at this

location.

 You can specify address_1 and address_2 as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

TEST—OFF Subcommand

Chapter 1. TSO/E commands and subcommands 331

v A general register

v An entry name (preceded by a period)

v An access register.

ARTO(register_number)

specifies that the location of the data pointed to by address_2 is in an alternate

address/data space referred to by an access register. Valid access register

numbers are 0 through 15. The operands ARTO and ALETTO (ALTO) are

mutually exclusive.

ARFROM(register_number)

specifies that the location of the data pointed to by address_1 is in an alternate

address/data space referred to by an access register. Valid access register

numbers are 0 through 15. The operands ARFROM, ALETFROM, and

POINTER are mutually exclusive.

ALETTO(alet_value) | ALTO(alet_value)

specifies that the location of the data pointed to by address_2 is in an alternate

address/data space. The ALETTO value may be from 1 to 8 hexadecimal

characters. The operands ALETTO and ARTO are mutually exclusive.

ALETFROM(alet_value) | ALFROM(alet_value)

specifies that the location of the data pointed to by address_1 is in an alternate

address/data space. The ALETFROM value may be from 1 to 8 hexadecimal

characters. The operands ALETFROM, ARFROM, and POINTER are mutually

exclusive.

LENGTH(integer) | LENGTH(4)

specifies the length, in decimal, of the field to be copied. If an integer is not

specified, LENGTH defaults to 4 bytes. The maximum length is 256 bytes.

POINTER

specifies address_1 is to be validity checked to see that it does not exceed

maximum virtual storage size. address_1 is then treated as an immediate

operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an

address will be converted to its hexadecimal equivalent). When using the

POINTER operand, do not specify a general register as address_1. The

operands ARFROM, ALETFROM, and POINTER are mutually exclusive.

NOPOINTER

specifies address_1 is to be treated as an address. If neither POINTER nor

NOPOINTER is specified, NOPOINTER is the default.

 The OR subcommand treats the 16 general registers as contiguous fields. You can

OR 10 bytes from general register 0 to another location as follows:

or 0r 80060. length(10)

The OR subcommand ORs the 4 bytes of register 0, the 4 bytes of register 1, and

the high-order 2 bytes of register 2 to virtual storage beginning at location 80060.

When a register is specified as address_1, the maximum length of data that is

ORed is the total length of the general registers or 64 bytes.

TEST—OR subcommand examples

Example 1

Operation: OR two fullwords of data, each in a virtual storage location, placing the

result in the second location.

Known:

TEST—OR Subcommand

332 z/OS V1R9.0 TSO/E Command Reference

v The starting address of the data: 80680

v The starting address of where the data is to be: 80690
or 80680. 80690. length(8)

Example 2

Operation: OR the contents of the two registers, placing the result in the second

register specified.

Known:

v The register which contains data specified as the first operand: 10

v The register which contains data specified as the second operand and the result:

5
or 10r 5r

Example 3

Operation: Turn on the high-order bit of a register.

Known:

v The OR value: X'80'

v The register: 1
OR 80. 1r l(1) pointer

Note: Specifying the pointer operand causes 80 to be treated as an immediate

operand and not as an address.

Example 4

Operation: OR the contents of an area pointed to by a register into another area.

Known:

v The register which points to the area that contains the data to be ORed: 14

v The virtual storage location which contains the second operand and result: 80680

v The length of the data to be ORed: 8 bytes
or 14r% 80680. l(8)

Example 5

Operation: General register 1 points to data in the address/data space referred to

by access register 1. OR four bytes where general register 1 points into location

A080 in the address/data space referred to by the ALET 40C3A.

or 1r? A080. arfrom(1) aletto(40c3a)

TEST—PROFILE command

Use the PROFILE command to establish, change, or list your user profile. For a

description of the PROFILE command syntax and function, see the “PROFILE

command” on page 234.

TEST—PROTECT command

Use the PROTECT command to control unauthorized access to a non-VSAM data

set. For a description of the PROTECT command syntax and function, see the

“PROTECT command” on page 241.

TEST—OR Subcommand

Chapter 1. TSO/E commands and subcommands 333

TEST—QUALIFY subcommand

Use the QUALIFY subcommand to qualify symbolic and relative addresses; that is,

to establish the starting or base location to which displacements are added so that

an absolute address is obtained. The QUALIFY subcommand allows you to

uniquely specify which program and which CSECT within that program you intend

to test using symbolic and relative addresses.

Alternately, you can specify an address to be used as the base location only for

subsequent relative addresses. Each time you use the QUALIFY subcommand,

previous qualifications are voided. Automatic qualification overrides previous

qualifications.

Symbols that were established by the EQUATE subcommand before you enter

QUALIFY are not affected by the QUALIFY subcommand.

TEST—QUALIFY subcommand syntax

�� QUALIFY

Q
 address

module_name

.entry_name

TCB

(address)

 ��

TEST—QUALIFY subcommand operands

address

specifies the base location to be used in determining the absolute address for

relative addresses only. It does not affect symbolic addressing. You can specify

address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

module_name[.entry_name]

specifies the name by which a load module is known, and optionally, an

externally referable name within a module. If only a module is specified, the

main entry point in the module will be supplied.

TCB(address)

specifies the address of a task control block (TCB). This operand is necessary

when programs of the same name are assigned to two or more subtasks and

you must establish uniquely which one is to be qualified.

Note: When using QUALIFY in combination with other subcommands of TEST

(with relative addressing) for routines such as user exit routines, validity

check routines, and subtasking, the load module or CSECT indicated might

differ from the one that was qualified. This is due to system control

processing of automatic qualification.

TEST—QUALIFY Subcommand

334 z/OS V1R9.0 TSO/E Command Reference

TEST—QUALIFY subcommand examples

Example 1

Operation: Establish the absolute address 5F820 as a base location for relative

addressing.

qualify 5f820.

Note: This is useful in referring to relative addresses (offsets) within a control block

or data area.

Example 2

Operation: Establish a base location for resolving relative addresses.

Known:

v The module name is BILLS.
qualify bills

Example 3

Operation: Establish an address as a base location for resolving relative

addresses.

Known:

v The address is 8 bytes past the address in register 7.
q 7r%+8

Example 4

Operation: Establish a base location for relative addresses to a symbol within the

currently qualified program.

Known:

v The base address: QSTART
qualify qstart

Example 5

Operation: Establish a symbol as a base location for resolving relative addresses.

Known:

v The module name: MEMBERS

v The CSECT name: BILLS

v The symbol: NAMES
qualify members.bills.names

Example 6

Operation: Define the base location for relative and symbolic addressing.

Known:

v The base location is the address of a program named OUTPUT.
q output

Example 7

Operation: Change the currently qualified module and CSECT. This means defining

the base location for relative and symbolic addresses to a new program. The

module can be a unique name under any task, or a module under the current task.

If there is another one by the same name under a different task, the module under

the current task would be used.

TEST—QUALIFY Subcommand

Chapter 1. TSO/E commands and subcommands 335

Known:

v The module name: PROFITS

v The CSECT name: SALES
qualify profits.sales

Example 8

Operation: Change the base location for symbolic and relative addresses to a

module that has the same name as another module under a different task.

Known:

v The module name: SALESRPT

v The specified module is the one under the task represented by the TCB whose

address is in general register 5.
q salesrpt tcb(5r%)

TEST—RENAME command

Use the RENAME command to change the name of a non-VSAM cataloged data

set or a member of a PDS, or to create an alias for a member of a partitioned data

set. For a description of the RENAME command syntax and function, see the

“RENAME command” on page 256.

TEST—RUN subcommand

Use the RUN subcommand to cause the program that is being tested to execute to

termination without recognizing any breakpoints. When you specify this

subcommand, TEST is terminated. When the program completes, you can enter

another command. Overlay programs are not supported by the RUN subcommand.

Use the GO subcommand to execute overlay programs.

TEST—RUN subcommand syntax

�� RUN

R

address

AMODE

SWITCH

(

)

24

31

 �

�
ASCMODE

(

AR

)

PRIMARY

 ��

TEST—RUN subcommand operands

address

execution begins at the specified address. If you do not specify an address,

execution begins at the last point of interruption or at the entry point, if the GO

or CALL subcommand was not previously specified. You can specify address

as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

TEST—QUALIFY Subcommand

336 z/OS V1R9.0 TSO/E Command Reference

v A module name and entry name (separated by a period)

v An entry name (preceded by a period).

AMODE [(24 | 31 | SWITCH)]

specifies the addressing mode in which program execution resumes after the

RUN subcommand has been issued. You can specify AMODE with RUN, even

if the address is not given. However, if AMODE or any abbreviation of AMODE

is defined as a symbolic address, it should not be specified with RUN if your

intention is to start execution at the address pointed to by AMODE. If RUN

AMODE is specified, program execution starts at the last breakpoint and the

SWITCH default is taken. If AMODE(SWITCH) is specified, program execution

resumes in the addressing mode, which was non-current when RUN was

issued. The current addressing mode can be determined by issuing the

LISTPSW command.

 Note the following:

v If you do not specify AMODE, there is no change in addressing mode.

v If you specify RUN with no operands, the program being tested is restarted at the

next executable instruction. However, if the tested program has abended in an

address space other than home, the home and primary address space identifiers

(ASIDs) are different, and the instruction address in the PSW refers to an

address space which TEST cannot access. Therefore, do not specify RUN

without operands after such an abend.

ASCMODE(AR | PRIMARY)

specifies the PSW mode in which program execution resumes after you issue

the RUN subcommand. If you specify ASCMODE(PRIMARY), the PSW mode is

set to execute the program using the primary address space control mode (in

primary mode). When ASCMODE(AR) is specified, the PSW is set to execute

the program in AR mode.

TEST—RUN subcommand examples

Example 1

Operation: Execute a program to termination from the most recent point of

interruption.

run

Example 2

Operation: Execute a program to termination from a specific address.

Known:

v The address: +A8
run +a8

TEST—SEND command

Use the SEND command to send a message to another terminal user or to the

system operator. For a description of the SEND command syntax and function, see

the “SEND command” on page 261.

TEST—RUN Subcommand

Chapter 1. TSO/E commands and subcommands 337

TEST—SETVSR subcommand

Use the SETVSR subcommand to set fields in the vector status register. The

SETVSR subcommand allows you to:

v Specify the vector mask register control mode

v Update the vector count

v Update the vector interruption index

v Update the vector in-use bits.

TEST—SETVSR subcommand syntax

�� SETVSR

MASK

NOMASK

VCT(

X

'nnnn'

)

VIX(

X

'nnnn'

)
 �

�
VIU(

X

'nn'

)
 ��

TEST—SETVSR subcommand operands

MASK | NOMASK

specifies the vector mask register control mode.

VCT(X'nnnn')

allows you to update the vector count. (X'nnnn') specifies the number of vector

elements that are to be processed.

VIX(X'nnnn')

allows you to update the vector interruption index. (X'nnnn') specifies the vector

element that processing is to start with.

VIU(X'nn')

allows you to update the vector in-use bits. (X'nn') specifies active register

pairs.

TEST—SETVSR subcommand examples

Example 1

Operation: Set values in the vector status register.

Known:

v The vector mask register control mode is to be NOMASK

v The vector count in hexadecimal: 75

v The vector interruption index in hexadecimal: 76

v The vector in-use bits in hexadecimal: B1
setvsr nomask vct(x’75’) vix(x’76’) viu(x’b1’)

TEST—STATUS command

Use the STATUS command to display the status of batch jobs at the terminal. For a

description of the STATUS command syntax and function, see the “STATUS

command” on page 272.

TEST—SETVSR Subcommand

338 z/OS V1R9.0 TSO/E Command Reference

TEST—SUBMIT command

Use the SUBMIT command to submit one or more batch jobs for processing under

TEST. For a description of the SUBMIT command syntax and function, see the

“SUBMIT command” on page 273.

TEST—TERMINAL command

Use the TERMINAL command to define the operating characteristics for the type of

terminal you are using. For a description of the TERMINAL command syntax and

function, see the “TERMINAL command” on page 277.

TEST—UNALLOC command

Use the UNALLOC command to release (deallocate) previously allocated data sets

that are no longer needed. Because FREE is an alias of the FREEMAIN

subcommand, use UNALLOC to free files under TEST. For a description of the

FREE command syntax and function, see the “FREE command” on page 149.

TEST—WHERE subcommand

Use the WHERE subcommand to obtain:

v An absolute address

v The name of a module and CSECT

v A relative offset within the CSECT

v The address of the TCB for the specified address.

You can also use the WHERE subcommand to obtain the absolute address serving

as the starting or base location for the symbolic and relative addresses in the

program. Alternately, you can obtain the absolute address of an entry point in a

particular module or control section (CSECT). If you do not specify any operands

for the WHERE subcommand, you receive the address of the next executable

instruction, the related load module and CSECT names, and the hexadecimal offset.

Note: After an abend outside the home address space, do not specify WHERE

without operands. The home and primary address space identifiers (ASIDs)

are different after an abend, resulting in an instruction address which TEST

cannot access.

TEST—WHERE subcommand syntax

�� WHERE

W

address

module_name

 ��

TEST—WHERE subcommand operands

address

You can specify address as:

v An absolute address

v A symbolic address

v A relative address

v An indirect address

v An address expression

v A module name and entry name (separated by a period)

TEST—SUBMIT Command

Chapter 1. TSO/E commands and subcommands 339

v An entry name (preceded by a period).

If you specify WHERE without an address, the address of the next executable

instruction, the related load module and CSECT names, and the hexadecimal

offset are displayed.

module_name

specifies the name by which a load module is known or the name of an object

module. The output of the WHERE subcommand is the module name, the

CSECT name, the offset within the CSECT, the absolute address, and the

address of the TCB. If only the module name was specified, the only output is

the absolute address of the module and the address of the TCB for the task

under which the module is found.

 If the specified address is not within the extent of any user program, only the

absolute address is returned. Along with the absolute address, a message will

be returned stating that the specified address is not within the program extent. If

no operands are specified, the absolute address returned is the address of the

next executable instruction.

TEST—WHERE subcommand examples

Example 1

Operation: Determine the absolute address of the next executable instruction.

where

Example 2

Operation: Determine in which module an absolute address is located.

Known:

v The absolute address: 3E2B8
where 3e2b8.

Example 3

Operation: Obtain absolute address of +2c4.

w +2c4

Note: An unqualified relative address is calculated from the currently qualified

address (as specified using the QUALIFY command or the current module

and CSECT, if no other qualification exists). The module name, CSECT

name, and TCB address are also obtained along with the absolute address.

Example 4

Operation: Obtain offset of the symbol SALES in the current program.

where sales

Note: The module name, CSECT name, absolute address, and the TCB address

are returned along with the offset of SALES.

Example 5

Operation: Determine in which module the address in register 7 is located.

w 7r%

Note: The offset, absolute address, and the TCB address are also returned with

the module name.

TEST—WHERE Subcommand

340 z/OS V1R9.0 TSO/E Command Reference

Example 6

Operation: Obtain the virtual address of the module named CSTART.

where cstart

Example 7

Operation: Obtain the virtual address of the CSECT named JULY in the module

named NETSALES.

where netsales.july

Example 8

Operation: Determine the relative address of symbol COMPARE in the module

named CALCULAT and CSECT named AVERAGE.

w calculat.average.compare

Note: The absolute address and TCB address are also returned with the relative

address.

Example 9

Operation: Determine the virtual address of +1CA.

Known:

v The CSECT: MARCH

v The module: GETDATA
where getdata.march.+1ca

Note: You also get the TCB address with the virtual address.

Example 10

Operation: Obtain the absolute address for relative address +2C in CSECT named

PRINTIT within the currently qualified module.

where .printit.+2C

TIME command

Use the TIME command to obtain the following information:

v Cumulative CPU time (from LOGON)

v Cumulative session time (from LOGON)

v Total service units used, which includes:

– CPU service units - A measure of task execution time.

– I/O service units - A measure of SMF data set activity.

– Storage service units - A measure of the page frame usage.

v Local time of day

Refers to the time of execution for this command. It is displayed as follows:

local time of day in hours(HH),

minutes(MM), and seconds(SS),

(am or pm is also displayed)

v Today’s date.

To enter the command while a program is executing, you must first cause an

attention interruption. The TIME command has no effect on the executing program.

TEST—WHERE Subcommand

Chapter 1. TSO/E commands and subcommands 341

TIME command syntax

�� TIME ��

TIME command return code

The return code is always zero.

TRANSMIT command

Use the TRANSMIT command to send information (a message), or a copy of

information (a data set), or both, to another user. The TRANSMIT command

converts this data into a special format so that it can be transmitted to other users

in the network. Use the RECEIVE command to retrieve the data and restore it to its

original format. TRANSMIT is an APF authorized command, and therefore it cannot

be called from an unauthorized program. See “TSOEXEC command” on page 356.

TRANSMIT command syntax

�� TRANSMIT

XMIT

�

 addressee

,

(

addressee

)

TERMINAL

DATASET

(dsname)

DSNAME

DDNAME

(ddname)

FILE

 �

�

 MESSAGE

MSG

MSGDDNAME

(ddname)

MSGFILE

MSGDATASET

(dsname)

MSGDSNAME

NOCOPYLIST

COPYLIST

ENCIPHER

EPILOG

NOEPILOG

�

�
FULLSCREEN

LINE

(xx)

LOG

(ALL)

NOLOG

WARN

NOWARN

LOGDATASET

LOGDSNAME

(dsname)

 �

�
LOGNAME(name)

�

,

MEMBERS(

member

)

NOTIFY

(ALL)

NONOTIFY

 �

�
PARM(parameter_string)

PDS

SEQUENTIAL

PROLOG

NOPROLOG

 �

TIME Command

342 z/OS V1R9.0 TSO/E Command Reference

||

||

�
SYSOUT(

*

)

sysout_class

OUTDDNAME

(ddname)

OUTFILE

OUTDATASET

(dsname)

OUTDSNAME

 ��

TRANSMIT command operands

Note: If you specify either MSGDDNAME or MSGFILE, or MSGDATASET or

MSGDSNAME, the TERMINAL operand is no longer the default.

(addressee[,addressee[, ...]])

specifies the information identifying the target user(s). You can combine one or

more of the following: a node and user ID specified as node.user_id or

node/user_id, a nickname, or a distribution list name. If you identify only one

user as the addressee, you can omit the parentheses. See “NAMES data set

function” on page 350.

 A maximum of 200 node/userid combinations and 200 nicknames may be

specified, but the total number of addressees may not exceed 200.

DATASET(dsname) | DSNAME(dsname)

specifies the name of a data set to be transmitted. The data set must be on a

direct access storage device (DASD).

DDNAME(ddname) | FILE(ddname)

specifies the 1 to 8 character ddname of a preallocated file to be transmitted.

The data set must be on a direct access storage device (DASD). If you transmit

a member of a preallocated partitioned data set, you must specify the

MEMBERS operand.

TERMINAL

specifies data input is to be taken from the terminal. You are prompted to enter

data to be transmitted either in line mode or in full- screen mode as specified by

the LINE or FULLSCREEN operand.

MSGDDNAME(ddname) | MSGFILE(ddname)

specifies a 1 to 8 character ddname or file name of the file that is to be

transmitted. You must allocate the file before it is transmitted. The system

transmits the file as a message.

 The file must have a record format of either FB or F and a record length of 80.

You can specify a sequential data set or a member of a partitioned data set.

MSGDDNAME or MSGFILE is mutually exclusive with MSGDATASET or

MSGDSNAME, and MESSAGE or MSG.

 If you specify either MSGDDNAME or MSGFILE, the TERMINAL operand is no

longer the default. This allows you to send the data or message to be displayed

at the recipient’s terminal without having to enter the data or message either in

line mode or in full-screen mode. If you want full-screen mode, you must

explicitly specify TERMINAL.

 When you specify the ENCIPHER operand, the following can happen:

v If you specify the ENCIPHER operand and either the TERMINAL, DATASET,

DDNAME, DSNAME, or FILE operands, the system does not encipher the

data set specified with the MSGDDNAME or MSGFILE operand.

TRANSMIT command

Chapter 1. TSO/E commands and subcommands 343

v If you specify ENCIPHER and do not specify the TERMINAL, DATASET,

DDNAME, DSNAME, or FILE operands, the system enciphers the data set

specified with the MSGDDNAME or MSGFILE operand.

The ENCIPHER operand is described later in this section.

MSGDATASET(dsname) | MSGDSNAME(dsname)

specifies the data set that is to be transmitted. The system transmits the data

set as a message.

 The data set must have a record format of either FB or F and a record length of

80. You can specify a sequential data set or a member of a partitioned data set.

MSGDATASET or MSGDSNAME is mutually exclusive with MSGDDNAME or

MSGFILE, and MESSAGE or MSG.

 If you specify either MSGDATASET or MSGDSNAME, the TERMINAL operand

is no longer the default. This allows you to send the data or message to be

displayed at the recipient’s terminal without having to enter the data or message

either in line mode or in full-screen mode. If you want full-screen mode, you

must explicitly specify TERMINAL.

 When you specify the ENCIPHER operand, the following can happen:

v If you specify the ENCIPHER operand and either the TERMINAL, DATASET,

DDNAME, DSNAME, or FILE operands, the system does not encipher the

data set specified with the MSGDATASET or MSGDSNAME operand.

v If you specify ENCIPHER and do not specify the TERMINAL, DATASET,

DDNAME, DSNAME, or FILE operands, the system enciphers the data set

specified with the MSGDATASET or MSGDSNAME operand.

The ENCIPHER operand is described later in this section.

MESSAGE | MSG

specifies that you are to be prompted for messages that accompany a

transmitted data set. The prompt is either in full-screen mode or in line mode,

depending on the terminal type and the specification of FULLSCREEN or LINE.

 Note the following:

v If you specify both TERMINAL and MESSAGE, TSO/E prompts you twice for

the data.

v TSO/E uses the prefix as the high-level qualifier for the name of the data set

to be transmitted.

COPYLIST | NOCOPYLIST

COPYLIST

specifies that TRANSMIT build a list of the specified addressees and

append it as a prolog to the message. If a data set is being transmitted, the

copylist is added as an accompanying message. If a message is being

transmitted, COPYLIST prefixes the message text.

NOCOPYLIST

specifies no copylist is to be generated or appended. NOCOPYLIST is the

default.

ENCIPHER

specifies TRANSMIT should encipher the data by invoking the Access Method

Services REPRO command. The TRANSMIT command prompts for ENCIPHER

options to be passed with the REPRO command.

EPILOG | NOEPILOG

TRANSMIT command

344 z/OS V1R9.0 TSO/E Command Reference

EPILOG

specifies TRANSMIT should include epilog lines from the NAMES data set,

if a terminal message is transmitted. An EPILOG is added unless you either

type in NOEPILOG or have no epilog in your NAMES data set. EPILOG is

the default.

NOEPILOG

specifies no epilog lines should be included.

FULLSCREEN | LINE | LINE(nn)

FULLSCREEN

requests all terminal input for messages or data be read in full-screen

mode. This is the default for 3270 terminals capable of supporting a

minimum screen size of 24 rows by 80 columns.

LINE | LINE(nn)

requests terminal input for messages and data be read in single line mode.

This is the default for non-3270 terminals. Use nn in a 1 to 2 character

string to mark the end of data. You can also use LINE(nn) to allow a CLIST

to provide messages or data. To terminate message input, enter a null line

or the 1 or 2 character string value LINE(nn) in columns 1 and 2. LINE(nn)

allows you to insert blank lines into the text. Leading blanks are eliminated

when in a CLIST, but they are kept when not in a CLIST.

LOG | NOLOG | LOG(ALL)

LOG

records the transmission in the LOG data set. LOG does not necessarily

indicate that the log entry will contain a line for every addressee except for

node.userid addressees. The LOG/NOLOG/LOGLST tags in the nicknames

section of the NAMES data set or the LOG/NOLOG tags in the control

section of the NAMES data set determine whether the log entry will contain

addressee entries for a nickname or distribution list. Only one log entry is

built in the default log file per transaction. LOG is the default. See “Logging

function of TRANSMIT and RECEIVE” on page 349. To ensure that the log

entry contains a line for each addressee, including those on a distribution

list, specify the LOG(ALL) option. See LOG(ALL) for more information.

NOLOG

specifies not to record the transmission in the LOG data set. NOLOG

overrides all LOG/LOGLST tags in the NAMES data set.

LOG(ALL)

specifies the log entry contain a line for each addressee, including those

derived from any distribution lists on the NAMES data set. This specification

overrides the NOLOG/NOLOGLST tags in the NAMES data set.

LOGDATASET(dsname) | LOGDSNAME(dsname)

specifies an alternate name of a sequential data set in which to log the

transmitted data. Users defined to more than one security label may need to

specify a log data set name if they are logged on at a security label other than

the SECLABEL of the profile that is protecting their log data set. A user’s

current security label (the security label the user is logged on with) must match

the security label of the log data set in order for a transmission to be logged in

the data set. Specifying a log data set allows users to log transmissions for

each security label they are defined to in separate data sets. The data set must

have a logical record length of 255, a record format of variable blocked, and a

block size of 3120. If the data set does not exist, the system creates it.

TRANSMIT command

Chapter 1. TSO/E commands and subcommands 345

LOGNAME(name)

uses the name as the LOGNAME qualifier on the log data set name. See

“Logging function of TRANSMIT and RECEIVE” on page 349.

MEMBERS(member)

transmits a list of members from the specified partitioned data set.

NOTIFY

notifies the sender when the data has been received. NOTIFY does not

necessarily guarantee that notification will be requested except for node.userid

addressees. For nicknames and distribution lists, control of notification is

determined by the :NOTIFY or :NONOTIFY tag in the nickname section of the

NAMES data set.

NOTIFY(ALL)

notifies the sender when the data has been received by all addressees. This

operand overrides the :NOTIFY or :NONOTIFY tags in the nickname entries of

the NAMES data set or distribution lists.

NONOTIFY

suppresses the notify function. This stops the notify function completely,

overriding any specification in the NAMES data set or in the distribution lists.

PARM(parameter_string)

Your installation may instruct you to use this operand to specify installation

dependent data.

PDS | SEQUENTIAL

PDS

unloads a member or members of a partitioned data set (PDS) before

transmission. This method preserves the directory information, but forces

the receiving user to restore the member(s) into a PDS. PDS is the default.

Note: Some non-MVS systems cannot receive a partitioned data set. To

transmit a member of a partitioned data set or a sequential data set,

use the SEQUENTIAL keyword. For more information about data set

transmission, see the SEQUENTIAL keyword description.

SEQUENTIAL

sends a member of a partitioned data set or a sequential data set as a

sequential data set. This method does not preserve directory information,

but allows the receiving user to restore the data set as either a sequential

data set or as a member of a partitioned data set. If transmission is by

ddname, the member must be preallocated. The SEQUENTIAL keyword is

ignored when no member is specified for a partitioned data set.

PROLOG | NOPROLOG

PROLOG

specifies TRANSMIT should include prolog lines from the control section of

the NAMES data set, if a terminal message is transmitted. PROLOG is the

default.

NOPROLOG

specifies not to include prolog lines.

SYSOUT(sysoutclass | *)

uses the SYSOUT class for messages from utility programs, which are used by

TRANSMIT (for example IEBCOPY). If you specify a * (asterisk), TSO/E directs

utility program messages to the terminal. The default is typically *, but the

installation can modify it.

TRANSMIT command

346 z/OS V1R9.0 TSO/E Command Reference

OUTDDNAME(ddname) | OUTFILE(ddname)

specifies the use of a preallocated file as the output data set for the TRANSMIT

command. No data is written to SYSOUT for transmission and the system limit

on the number of records that can be transmitted does not apply. TSO/E

assigns the DCB attributes as LRECL=80, BLKSIZE=3120, and RECFM=FB.

Specify the ddname as either a sequential data set or a member of a

partitioned data set.

 Use OUTDDNAME or OUTFILE in conjunction with the INDDNAME or INFILE

operand of the RECEIVE command. OUTDDNAME and OUTFILE are primarily

intended for system programmer use.

OUTDSNAME(dsname) | OUTDATASET(dsname)

specifies the use of a data set as the output data set for the TRANSMIT

command. No data is written to SYSOUT for transmission and the system limit

on the number of records that can be transmitted does not apply. TSO/E

assigns the DCB attributes as LRECL=80, BLKSIZE=3120, and RECFM=FB.

The data set must be a sequential data set.

 Use OUTDSNAME or OUTDATASET in conjunction with the INDSNAME or

INDATASET operand of the RECEIVE command. OUTDSNAME and

OUTDATASET are primarily intended for system programmer use.

WARN | NOWARN

WARN

You can request that the TRANSMIT command issues warning message

INMX034I when the warning threshhold is initially met, and thereafter

whenever the warning interval is met. (This is the default if neither WARN

nor NOWARN is specified.)

NOWARN

You can request that the TRANSMIT command does not issue warning

message INMX034I when the warning threshhold is initially met, nor

thereafter whenever the warning interval is met.

TRANSMIT command return codes

 Table 53. TRANSMIT command return codes

0 Processing successful.

4 Processing successful, but a warning message has been issued.

8 Processing incomplete. At least one transmission was unsuccessful.

12 Processing unsuccessful.

16 Processing unsuccessful. Abnormal end.

Transmitting data sets

You can use the TRANSMIT command to transmit sequential or partitioned data

sets with record formats of F, FS, FB, FBS, V, VB, VBS, and U. The data sets must

reside on a direct access storage device (DASD). For a VB or VBS data set, the

largest logical record length (LRECL) TSO/E can transmit to VM is 65,535. Data

sets with machine and ANSI print-control characters are also supported. TRANSMIT

does not support data sets with the following types of values:

v keys

v ISAM data sets

v VSAM data sets

TRANSMIT command

Chapter 1. TSO/E commands and subcommands 347

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

v data sets with user labels

If a partitioned data set (PDS or PDSE) is transmitted, it is unloaded with IEBCOPY

and then the unloaded version is transmitted. If a single member is transmitted, it is

generally unloaded before transmission. You can force transmission of a partitioned

data set member as a sequential data set by using the SEQUENTIAL operand.

Forced transmission of a partitioned data set member as a sequential data set does

not preserve the directory information. The IEBCOPY unload preserves directory

information, but the receiver must reload it into a partitioned data set.

Transmitting data sets as messages

You can transmit a data set as a message by specifying MSGDDNAME or

MSGFILE, or MSGDATASET or MSGDSNAME. Using these operands might reduce

the time it takes to transmit a file or data set. The file or data set must have a

record format of fixed block (FB) and a record length (LRECL) of 80. You can

transmit either a sequential data set or a member of partitioned data set. For

MSGDDNAME or MSGFILE, you must allocate the file before you transmit.

Transmitting messages

If you specify MESSAGE when you transmit data, TRANSMIT prompts you for

messages that accompany the data. These messages are shown to the receiving

user when the RECEIVE command is issued. The system displays these messages

to the receiving user when the RECEIVE command is issued and before the user is

prompted to perform some action about the data.

You can enter up to 220 lines of data in either full-screen mode or single line mode.

Of the 220 lines of data, ten are reserved for the PROLOG lines. If you specify the

EPILOG tag in the NAMES data set, you can specify an additional 10 lines beyond

the 220 line limit. For full-screen mode, use the program function (PF) keys for

scrolling (PF7 or PF19 and PF8 or PF20) and for termination (PF3 or PF15). For

single line mode, messages are terminated by either a null line or the string value

specified in LINE(nn).

Note: Full-screen mode is the default for 3270 terminals capable of supporting a

minimum screen size of 24 rows by 80 columns.

Transmitting a message that you enter from the terminal is the simplest form of the

TRANSMIT command. You specify TRANSMIT addressee-list and TRANSMIT

defaults to terminal input. Messages sent in this manner are not saved in a data

set, but are saved in the LOG data set.

Transmitting enciphered data

To encipher the transmitted data, specify the ENCIPHER operand. The TRANSMIT

command prompts for encipher options, which are passed to the access method

services REPRO command.

Data encryption function of TRANSMIT and RECEIVE

The TRANSMIT and RECEIVE commands support encryption using DFSMS.

TSO/E uses the access method services REPRO command to encrypt data sets

before transmitting them. However, your installation must allow encryption.

If you have either of the programs installed and your installation allows encryption,

TRANSMIT, as required, invokes the access method services REPRO command to

encrypt data sets before they are transmitted. The TRANSMIT and RECEIVE

TRANSMIT command

348 z/OS V1R9.0 TSO/E Command Reference

commands prompt you for encipher/decipher options and append what you entered

as REPRO command suboperands of the ENCIPHER or DECIPHER operand.

Transmitting data sets and messages with security labels

If your installation uses security labels and security checking, any data sets or

messages you transmit have a security label associated with them. The security

label you are logged on with when you issue the TRANSMIT command is the one

associated with the data. In order for receivers to view the data set or message,

they must be logged on with a security label that is equal to or greater than the one

associated with the data.

Some considerations for transmitting and receiving data sets and messages with

security labels are:

v Receivers can only receive data sets and messages that they are authorized to

receive based on the security label they are logged on with.

v To receive data sets and messages with a greater security label, receivers can

log on with a greater security label if their TSO/E user IDs are authorized to do

so. They can then use the RECEIVE command to view the messages and data

sets.

v If the receivers cannot log on with a security label that allows them to view the

transmitted data (data set or message), the system deletes the data, unless your

installation uses a JES installation exit to take some other action.

v The receivers do not receive a notice that they have data sets or messages to

receive if the data was transmitted with a greater security label than the receivers

are logged on with.

Logging function of TRANSMIT and RECEIVE

The TRANSMIT and RECEIVE functions normally log each file transmitted and

received. The TRANSMIT and RECEIVE commands create appropriate log data

sets, if they do not already exist.

The name of the log data set is determined as follows:

1. If the LOGDATASET or LOGDSNAME operand is used, the data set

‘prefix.logdsname’ is used for logging.

2. In the absence of any user or installation specification, the default log data set

name is ‘prefix.LOG.MISC’.

3. The qualifier LOG is called the log selector and can be changed by the

:LOGSEL tag in the control section of the NAMES data set. This qualifier is

common for all log data sets belonging to any given user.

4. The qualifier MISC is called the log name. It might be overridden by the

LOGNAME operand on the TRANSMIT command, the :LOGNAME tag in the

control section of the NAMES data set, or by the :LOGNAME tag in a nickname

definition.

Use the log selector to define all of your log data sets under one name. The log

name identifies each individual data set in the log data set. For example, you can

list all of your log data sets by ‘prefix.LOG’. This would give you a list of all of your

log data sets with the individual log names.

The log data sets have the following DCB attributes: LRECL=255, BLKSIZE=3120,

and RECFM=VB.

TRANSMIT command

Chapter 1. TSO/E commands and subcommands 349

With any given invocation of the TRANSMIT or RECEIVE command, logging can

occur to more than one log data set depending upon the presence of the

:LOGNAME tag on the nickname or distribution list entry in the NAMES data set.

However, with any given invocation of the TRANSMIT or RECEIVE command, only

one log entry is written to any one log data set. This log entry then contains an

addressee entry for each addressee being logged to that log data set.

The first lines in each log entry contain a line of hyphens and a descriptor line. The

format of the descriptor line is:

Column Usage

1 - 8 Name of the command using the entry.

17 - 60 Name of the data set transmitted or received.

63 - 82 Time stamp from the command execution.

For the TRANSMIT command log entries, subsequent lines indicate the addressees

to which the transmission was sent, the names of any members of a partitioned

data set selected for transmission, and any messages entered with the TRANSMIT

command.

For the RECEIVE command log entries, the second log line always identifies the

originator of the transmission. The originator of the transmission can be the issuer

of the TRANSMIT command (in the case of a file or message receipt) or the issuer

of the RECEIVE command (if the log entry is for notification). If the entry in the log

is a file or a message receipt, the time stamp recorded is from the TRANSMIT

command. If the entry in the log was a notification, the time stamp is from the

RECEIVE command. The format is:

Column Usage

9 - 15 Nickname of the originating user or blanks.

17 - 24 Node name of the originating user.

26 - 33 User ID of the originating user.

35 - 61 Name of the originating user or blank.

63 - 82 Time stamp from the originating command.

For RECEIVE command notification entries, the third log line identifies the original

transmission. The data set name and time stamp on this line are those from the

original transmission. The format of the third log line is:

Column Usage

4 - 15 Error code from RECEIVE. STORED indicates that the RECEIVE

operation was successful.

17 - 60 Data set name from the TRANSMIT command.

63 - 82 Time stamp from the TRANSMIT command.

NAMES data set function

The TRANSMIT command allows several different specifications of a list of

addressees. The simplest is a single addressee whose node name and user ID are

specified explicitly. The next level is the nickname specification. The nickname is a

1 to 8 character name that is a synonym for the node and user ID. The TRANSMIT

and RECEIVE commands find the actual node and user ID by looking up the

TRANSMIT command

350 z/OS V1R9.0 TSO/E Command Reference

nickname in tables provided in the NAMES data set. The final level of addressing is

a distribution list. A definition in the NAMES data set identifies a distribution list

name. The named list can reference up to 100 nicknames of either addressees or

other distribution lists.

Each user of the TRANSMIT and RECEIVE commands can have one or more

NAMES data sets to resolve nicknames and establish the default mode of

operation. In the absence of any explicit installation specification, the name of the

first of these data sets is ‘prefix.NAMES.TEXT’. The first data set contains the

names of any other NAMES data sets. The data set can have either fixed or

varying length records. Using varying length records will save disk space. The

records are numbered according to standard TSO/E conventions. They can also be

unnumbered. The data set is either blocked or unblocked with any record length

less than or equal to 255.

The data set is composed of two sections, the control section and the nicknames

section. The control section must precede the nicknames section. The control

section ends at the first :NICK tag. Use the control section to set defaults for

LOG/NOLOG and NOTIFY/NONOTIFY, prolog or epilog lines, the default log data

set name, and to identify other NAMES data sets that are used.

The nicknames section contains one entry for each nickname and distribution list

name that you want to define.

Each occurrence of a colon in the NAMES data set is treated as the start of a tag.

If the tag following the colon is not one of those described later in this section, it is

treated as a user-defined tag that may be processed by an installation-written

application that uses the NAMES data set. The information that follows a

user-defined tag is ignored by TRANSMIT and RECEIVE processing. For more

information about installation-written applications, see z/OS TSO/E Programming

Guide.

Control section tags

Use the beginning of the NAMES data set to control certain operations of the

TRANSMIT and RECEIVE commands. The tags are optional. You can include any

of the following tags:

:ALTCTL.dsname

specifies the fully-qualified file name of another file to be used in the nickname

look up process. If TRANSMIT finds more than one :ALTCTL tag, TRANSMIT

uses the order of the :ALTCTL tags to scan the files. You can specify up to ten

:ALTCTL tags. All control section tags, the :LOG and :NOLOG tags, the

:LOGNAME tag, and the :NOTIFY and :NONOTIFY tags are always ignored

when read from any alternate NAMES data set.

:EPILOG.text

in the control section, specifies a text line to be appended at the end of any

transmitted message. The maximum length of an epilog line is 72 characters.

You can specify up to ten :EPILOG lines. If more than one :EPILOG record is

found, records appear in the message in the same order as they are in the file.

Text data for the :EPILOG tag must be on the same line as the :EPILOG tag.

:PROLOG.text

in the control section, specifies a text line to be inserted at the beginning of any

transmitted message. The maximum length of a prolog line is 72 characters.

You can specify up to ten :PROLOG lines. If more than one :PROLOG record is

TRANSMIT command

Chapter 1. TSO/E commands and subcommands 351

found, records appear in the message in the same order as they are in the

NAMES data set. Text data for the :PROLOG tag must be on the same line as

the :PROLOG tag.

:LOGNAME.name

in the control section, serves as a default qualifier for the log data set name. If

you specify it in the nickname entry, the value provided overrides the default set

in the control section. See “Logging function of TRANSMIT and RECEIVE” on

page 349.

:LOGSEL.name

in the control section, specifies the second (middle) qualifier of all log data sets.

See “Logging function of TRANSMIT and RECEIVE” on page 349.

:LOG | :NOLOG

in the control section, indicates whether you want logging for any addressee

specified by node and user ID and for any nickname that does not also specify

:LOG or :NOLOG. If the nickname entry contains the :LOG or :NOLOG tag, this

value overrides any value in the control section. However, it might have been

overridden by a specification on the TRANSMIT command. If you specify

NOLOG in your NAMES data set in the control section or on a :NICK tag,

TSO/E prompts you with a message to receive data set

‘PREFIX.MAIL.USERID’. TSO/E then stores and places the message in

‘myid.MAIL.USERID’ where myid is the receiver of the message and USERID is

the originator of the message.

 The default is :NOLOG.

:NOTIFY | :NONOTIFY

in the control section, indicates whether you want notification for any addressee

specified by node and user ID, and for any nickname where the nickname entry

does not contain :NOTIFY or :NONOTIFY. The value of :NOTIFY or

:NONOTIFY in the NAMES data set might be overridden by a similar

specification on the TRANSMIT command. If you want to be notified for

addressees on distribution lists, you must specify :NOTIFY on the distribution

list in the control data set or specify NOTIFY(ALL).

 The default is :NOTIFY.

Nicknames section tags

The nicknames section is composed of tags and their values in the same manner

as the control section. The nicknames section is different from the control section in

that it is divided by the occurrence of each :NICK tag and continues until the next

:NICK tag, which starts the next definition. Use the nickname as either a nickname

of a single user or the name of a distribution list. The :NODE and :USERID tags are

present when you use the nickname for a user definition. The :LIST and :CC tags,

or both are present when you use the nickname for distribution list definition.

Use the log and notify tags, except for :LOGLST and :NOLOGLST, with either a

user ID definition or a distribution list definition.

Note the following:

1. Each nickname entry must begin with the :NICK tag and :NICK must be the first

non-blank character on the line.

2. You can specify the tags as all uppercase or all lowercase.

3. :NICK.nickname and :USERID.user_id are required.

TRANSMIT command

352 z/OS V1R9.0 TSO/E Command Reference

:NOTIFY | :NONOTIFY

in the control section, specifies whether you want notification for any addressee

specified by node and user ID, and for any nickname where the nickname entry

does not contain :NOTIFY or :NONOTIFY. The value of :NOTIFY or

:NONOTIFY in the NAMES data set might be overridden by a similar

specification on the TRANSMIT command. If you want to be notified for

addressees on distribution lists, you must specify :NOTIFY on the distribution

list in the control data set or specify NOTIFY(ALL).

:NICK.name

indicates a nickname entry in the NAMES data set. It must be the first

non-blank (except for line numbers) character of the record. The nickname is a

1 to 8 character string of non-blank alphanumeric characters.

:NODE.node_id

in the nickname entry, specifies a network node name for the nickname entry. If

the :NODE tag is not present in a nickname entry, the local user’s node name is

assumed.

:USERID.user_id

specifies the user ID of the user to be identified by the nickname. You cannot

use the :USERID tag with :LIST or :CC tags in the same nickname entry.

:LOG | :NOLOG

in the control section, indicates whether you want logging for any addressee

specified by node and user ID and for any nickname that does not also specify

:LOG or :NOLOG. If the nickname entry contains the :LOG or :NOLOG tag, this

value overrides any value in the control section. However, it might have been

overridden by a specification on the TRANSMIT command. If you specify

NOLOG in your NAMES data set in the control section or on a :NICK tag,

TSO/E prompts you with a message to receive data set ‘A.MAIL.USERID’.

TSO/E then stores and places the message in ‘myid.MAIL.USERID’ where myid

is the receiver of the message and USERID is the originator of the message.

:LOGLST | :NOLOGLST

in the nickname entry, defines a distribution list. The tag indicates whether a log

entry should be made for each addressee in the list.

:NAME.user_name

specifies the plain text name of the user being defined. This name appears in

the copy list and in any log entries for this nickname. You can specify up to 30

characters.

:ADDR.address

in the nickname entry, specifies the mailing address of the specified user.

Separate individual lines of the address with semicolons.

:LIST.{name | name_list}

in the nickname entry, specifies a list of addressees that make up the

distribution list. Specify the addressee as either a nickname of the name or

another distribution list. The :LIST tag can reference up to 100 nicknames. If

you want to be notified for addressees on distribution lists, specify :NOTIFY on

the distribution list in the control data set or specify NOTIFY(ALL) on the

TRANSMIT command.

:CC.{name | name_list}

specifies further nicknames of addressees for a distribution list. It is treated as a

synonym of the :LIST tag. You can specify up to 100 nicknames.

:PARM.text

specifies up to 30 characters of installation-defined data. TSO/E passes this

TRANSMIT command

Chapter 1. TSO/E commands and subcommands 353

data to the RECEIVE command installation exits. For more information about

how an installation uses these exits, see z/OS TSO/E Customization.

TRANSMIT command examples

In the following examples, the transmitting user is assumed to have user ID USER1

on node NODEA and the receiving user is assumed to have user ID USER2 on

node NODEB. The sending user has a NAMES data set as follows:

* Control section

:altctl.DEPT.TRANSMIT.CNTL

:prolog.Greetings from John Doe.

:prolog.

:epilog.

:epilog.Yours,:epilog.John Doe :epilog.NODEA.USER1

*

* Nicknames section.

*

:nick.alamo :list.Jim Davy :logname.alamo :notify.

:nick.addrchg :list.joe davy jim :nolog :nonotify

:nick.Joe :node.nodeb :userid.user2 :name.Joe Doe

:nick.Me :node.nodea :userid.user1 :name.me

:nick.Davy :node.alamo :userid.CROCKETT :name.Davy Crockett

:nick.Jim :node.ALAMO :userid.Bowie :name.Jim Bowie

In the examples involving the RECEIVE command, data entered by the user

appears in lowercase and data displayed by the system is in uppercase.

Example 1

Transmit a copy of the ‘SYS1.PARMLIB’ data set to Joe, identifying Joe by his node

and user ID.

transmit nodeb.user2 da(’sys1.parmlib’)

Example 2

Joe receives the copy of ‘SYS1.PARMLIB’ transmitted above.

receive

Dataset SYS1.PARMLIB from USER1 on NODEA

Enter restore parameters or ’DELETE’ or ’END’ +

<null line>

Restore successful to dataset ’USER2.PARMLIB’

No more files remain for the RECEIVE command to process.

In the preceding example, Joe has issued the RECEIVE command, seen the

identification of what arrived, and chosen to accept the default data set name for

the arriving file. The default name is the original data set name with the high-level

qualifier replaced by his user ID.

Example 3

Transmit two members of ‘SYS1.PARMLIB’ to Joe, and add a message identifying

what was sent. Joe is identified by his NICKNAME, leaving it to TRANSMIT to

convert it into node and user ID by the nicknames section of the NAMES data set.

transmit joe da(’sys1.parmlib’) mem(ieasys00,ieaips00) line

ENTER MESSAGE FOR NODEB.USER2

Joe,

 These are the parmlib members you asked me to send you.

They are in fact the ones we are running today.

Yours, John Doe

<null line>

TRANSMIT command

354 z/OS V1R9.0 TSO/E Command Reference

The message text in this example was entered in line mode which would be

unusual for a user on a 3270 terminal, but which is easier to show in an example.

Example 4

Joe begins the receive process for the members transmitted in Example 3 and ends

the receive without actually restoring the data onto the receiving system, because

Joe does not know where he wants to store the data.

receive

Dataset SYS1.PARMLIB from USER1 on NODEA

Members: IEASYS00, IEAIPS00

Greetings from John Doe.

Joe,

 These are the parmlib members you asked me to send you.

They are in fact the ones we are running today.

Yours, John Doe

NODEA.USER1

Enter restore parameters or ’DELETE’ or ’END’ +

end

In the preceding example, notice that the PROLOG and EPILOG lines have been

appended to the message entered by the sender. In an actual RECEIVE operation,

the original message text would appear in both uppercase and lowercase just as

the sender had entered it (assuming the receiver’s terminal supports lowercase.)

Example 5

Joe receives the ‘SYS1.PARMLIB’ members transmitted in Example 3. Specify

space parameters for the data set that will be built by RECEIVE to leave space for

later additions.

receive

Dataset SYS1.PARMLIB from USER1 on NODEA

Members: IEASYS00, IEAIPS00

Greetings from John Doe.

Joe,

 These are the parmlib members you asked me to send you.

They are in fact the ones we are running today.

Yours, John Doe

NODEA.USER1

Enter restore parameters or ’DELETE’ or ’END’ +

da(’nodea.parmlib’) space(1) cyl dir(10)

Restore successful to dataset ’NODEA.PARMLIB’

No more files remain for the RECEIVE command to process.

The received members IEASYS00 and IEAIPS00 are saved in the output data set

with their member names unchanged.

Example 6

Send a message to a user on another system.

transmit davy

The system displays the following screen for input:

 DATA FOR ALAMO.CROCKETT

0001 Davy,

0002 Did you check the report I gave you last week?

0003 Joe

0004

0005 ...

TRANSMIT command

Chapter 1. TSO/E commands and subcommands 355

Press PF3 to send the message.

In this example, the target user is identified by his nickname and no data set is

specified, causing the terminal to be used as an input source. You can type your

data, scroll using program function (PF) keys PF7 or PF19 and PF8 or PF20, and

exit using PF3 or PF15, or cancel using the PA1 key.

Example 7

Send a member of a partitioned data set as a message and log the transmission in

the data set CNFDNTL.MYLOG. In this example, the member MEETINGS of the

partitioned data set MEMO.TEXT is sent as a message to JOE and this message is

logged in ‘MIKE.CNFDNTL.MYLOG’.

transmit nodeb.joe msgds(memo.text(meetings)) logda(cnfdntl.mylog)

 INMX000I 0 message and 7 data records sent as 5 records to NODEB.JOE

 INMX001I Transmission occurred on 07/27/87 at 09:00:35.

READY

JOE receives the message in his data set MY.LOG, instead of the default log data

set, LOG.MISC:

receive logds(my.log)

 INMR901I Dataset ** MESSAGE ** from MIKE on NODED

 THIS IS A SCHEDULE OF STATUS MEETINGS FROM AUGUST THROUGH NOVEMBER:

 AUGUST MONDAYS AT 9:00 A.M. IN MY OFFICE

 SEPTEMBER TUESDAYS AT 10:00 A.M. IN YOUR OFFICE

 OCTOBER WEDNESDAYS AT 10:00 A.M. IN JACK’S OFFICE

 NOVEMBER MONDAYS AT 2:00 P.M. IN JILL’S OFFICE

TSOEXEC command

Use the TSOEXEC command to invoke an authorized command from an

unauthorized environment. For example, you can use TSOEXEC when in the

Interactive System Productivity Facility (ISPF), which is an unauthorized

environment, to invoke authorized commands such as TRANSMIT and RECEIVE.

Three CLIST control variables are related to the use of the TSOEXEC command:

v &SYSABNCD contains the ABEND code.

v &SYSABNRC contains the ABEND reason code.

v &SYSCMDRC contains the command return code returned by the command

most recently invoked by TSOEXEC.

For more information about these variables, see z/OS TSO/E CLISTs.

These variables are changed slightly when used in REXX execs. They are as

follows:

v SYSABNCD

v SYSABNRC

v SYSCMDRC

Note: Using TSOEXEC ISPSTART does not give a controlled environment. For

information about controlled environments, see z/OS Security Server RACF

Security Administrator’s Guide.

TRANSMIT command

356 z/OS V1R9.0 TSO/E Command Reference

TSOEXEC command syntax

�� TSOEXEC

command_name
 ��

TSOEXEC command operand

[command_name]

specifies any TSO/E command the TSO/E service facility can invoke, whether

the command is authorized or unauthorized.

TSOEXEC command return codes

 Table 54. TSOEXEC command return codes

0 Processing successful.

4 Processing completed, but the requested command returned a non-zero

return code. It is in CLIST control variable &SYSCMDRC.

8 An attention interruption ended the requested command.

12 The requested command abnormally terminated. Its abend code and

REASON code are in CLIST control variables &SYSABNCD and

&SYSABNRC.

24 System error.

28 The requested command is not a valid TSO/E command.

TSOEXEC command examples

Example 1

Operation: Use the TRANSMIT command to send a copy of a data set to another

user while operating in ISPF.

Known:

v The user node: NODEB

v The user ID: USER2

v The data set name: SYS1.PARMLIB
TSOEXEC TRANSMIT NODEB.USER2 DA(’SYS1.PARMLIB’)

TSOLIB command

The TSOLIB command provides for an additional search level that TSO/E uses

when searching for commands and programs. With TSOLIB, you specify load

module and program object libraries containing executable commands and

programs, which are put to the top of the standard search order.

You can activate and deactivate the additional search level without leaving your

TSO/E session. For the life of the additional search level, the activated load module

and program object libraries serve as a task library to commands and programs you

invoke.

This provides for flexible access to different versions of commands and programs,

reduces the access time, and can simplify management of user IDs and LOGON

procedures.

TSOEXEC Command

Chapter 1. TSO/E commands and subcommands 357

v The TSOLIB command, with its ACTIVATE operand, allows you to request

access to load module and program object libraries. The requested load module

and program object libraries will be put to the top of the system’s search order

for load module and program object libraries.

v It allows you, with its DEACTIVATE operand, to remove these load module and

program object libraries from the search chain, thus, reestablishing the previous

search order.

v The TSOLIB command allows for stacking multiple requests for load module and

program object libraries, making any further request to become the active one

but keeping the previous requests stacked for later use. Every removal, and

respective deactivation, of the currently active request reactivates the previous

request. This allows for faster variation of your library search order without

having to enter lengthy command strings.

The stacking of multiple requests can be inhibited, thus ensuring that a request is

performed only if no previous request is active.

v The DISPLAY operand of the TSOLIB command shows the currently active

libraries being put to the top of the standard search order. If any library requests

are stacked, they are shown as well.

v The RESET operand sets the search order back to its original state.

Search order for load modules

The TSOLIB command is meant to provide a flexible way to extend the system’s

search order for commands and programs you invoke, or commands and programs

invoked from other commands and programs.

For efficient use of the TSOLIB command you need to be aware of the search

order, its variations through TSOLIB, and further variations by programs like ISPF

that establish their own task libraries.

The standard search order

Without having used the TSOLIB command, TSO/E searches for a command or

program using the following sequence:

1. The step library or job library

The user’s LOGON procedure is checked for any //STEPLIB DD-card that

specifies a user’s load module library or list of libraries. If the module is found

here, it will be executed.

2. The link pack area

The search is continued in the libraries specified in SYS1.PARMLIB member

LPALSTnn. If the module is found here, it will be executed.

3. The link list concatenation

The search is continued in the libraries specified in SYS1.PARMLIB member

LNKLSTnn. The module should be found here.

Extending the range of a search with TSOLIB

With the first invocation of TSOLIB, you activate an additional search level and

specify a load module library or a list of load module libraries. The specified

libraries serve as a task library for further command and program invocations.

The system starts searching an invoked command or program in the task library

you have activated. If a command or program is found in the newly activated

libraries, it is executed; else the system follows the standard search order as

described before.

TSOLIB Command

358 z/OS V1R9.0 TSO/E Command Reference

The extended search order remains intact until one of the following happens:

v You reset the additional search level.

The system will use the standard search order.

v You deactivate the additional search level.

If you did not stack any previous requests, the system will use the standard

search order.

If a request has been stacked, the previously stacked request becomes active.

v You logoff from the session.

After a new logon, the system will use the standard search order.

v You invoke an application, like ISPF, that places its own task libraries on top of

the search order TSOLIB has set up.

When that application completes, the search order TSOLIB has set up again

becomes the top of the search chain.

Further considerations

v Authorized Commands and Programs

A load module library activated by the TSOLIB command can contain

unauthorized and authorized commands and programs.

Authorized commands and programs:

– Must have been link-edited with an authorization code of 1

– Must reside in an APF-authorized library

– Must be listed on the AUTHCMD, AUTHPGM or AUTHTSF statements of

SYS1.PARMLIB member IKJTSOxx before they can be invoked.

To allow authorized commands or programs to be invoked, the entire

concatenation of data sets must contain data set names that reside in the

APF-authorized library list. This means that, if you activate a list of load module

and program object libraries with TSOLIB, every data set name representing a

library must be named in the APF-authorized library list.

v Direct entry from applications to TSO/E

Several applications, like ISPF, allocate their own task libraries, for example

ISPLLIB, to be on top of the search order that TSOLIB set up. However,

applications also have a direct entry in to TSO/E environment. For example:

– TSO/E service facility in an isolated environment

– The TSO/E TSOEXEC command

– Authorized commands and programs

These use the search order that TSOLIB has set up.

v Access permission to libraries

If you have a security server active on your system, ensure that you are

permitted read or execute access to the libraries TSOLIB is to activate.

Command usage

The TSOLIB command with its ACTIVATE, DEACTIVATE, and RESET operands is

intended to be issued from TSO/E READY mode, either in the foreground or in the

background. The requested extension on the search order becomes effective when

TSO/E READY mode processes its next command. If the TSOLIB command is

issued from any other environment, like ISPF or REXX, only the TSOLIB command

with its DISPLAY operand is valid.

TSOLIB Command

Chapter 1. TSO/E commands and subcommands 359

|
|

|
|
|
|
|

The TSOLIB command must be issued from a ″TSO/E READY″ environment. This

condition is met when TSOLIB is invoked from the READY prompt or from a CLIST

invoked from the READY prompt. To invoke the TSOLIB command from a REXX

exec, however, the command must be placed on the REXX external data stack.

Execution is delayed until after the REXX exec completes. Just before the READY

prompt is redisplayed, all of the commands on the REXX external data stack will be

read and executed. This will retrieve and execute the TSOLIB command that was

placed on the REXX external data stack by the REXX exec. For more information,

see “TSOLIB command examples” on page 363.

Stacking load module and program object library requests

Requests to activate load module and program object libraries into the search chain

can be stacked. You control this with the COND and UNCOND operands of the

TSOLIB command.

By default, a request to activate libraries is done unconditionally. The request

becomes the current and active one. Any previous request (if one was issued) is

stacked and temporarily made inactive. The next request to deactivate libraries will

remove the current and active one from the search chain and re-activate the

previous request (if there was one).

If a request is made conditionally, by using the COND keyword operand, the

request will not become active if any previous activation took place before. See

“TSOLIB command examples” on page 363 for a detailed example on how to stack

load module library requests.

TSOLIB command syntax

��

TSOLIB
 UNCOND

ACTIVATE

Activ

ACT

COND

DEACTIVATE

DEACT

DEA

RESET

RES

DISPLAY

DISP

DIS

QUIET

��

Activ

�

�

 ,

(1)

DATASET(

dsname

)

,

(2)

DSNAME(

dsname

)

FILE(ddname)

DDNAME(ddname)

LIBRARY(ddname)

Notes:

1 1 to 15 data sets for libraries.

TSOLIB Command

360 z/OS V1R9.0 TSO/E Command Reference

2 1 to 15 data sets for libraries.

TSOLIB command operands

ACTIVATE | ACT

indicates that you want to include the specified libraries ahead of the standard

search order.

DEACTIVATE | DEACT | DEA

indicates that you want to exclude the previously activated libraries from the top

of the search order.

 If previous activation requests have been done unconditionally, DEACTIVATE

causes the last stacked request to become active again. See “Stacking load

module and program object library requests” on page 360 for more information

about stacking library activation requests.

DATASET(dsname[,dsname, ...]) | DSNAME(dsname[,dsname, ...])

specifies the data set name of a load module library, or a list of data set names

of load module libraries, to be activated. Up to 15 data set names can be

specified.

 The data sets must be cataloged partitioned data sets, and they must be of the

same record format (RECFM = U).

 For the load module or program object libraries to be activated, the system

automatically creates a ddname of SYSnnnnn. The ddname remains allocated

until you issue TSOLIB DEACTIVATE or TSOLIB RESET.

 If you want to activate more than 15 data set names, use the FILE operand of

TSOLIB.

 For authorized commands and programs to be invoked from a library read

“Further considerations” on page 359.

FILE(ddname) | DDNAME(ddname) | LIBRARY(ddname)

specifies a ddname that represents a load module library or a list of load

module libraries. The ddname must be allocated before you issue the TSOLIB

command. The ddname remains allocated even after a TSOLIB DEACTIVATE

or RESET command is issued. Use the FREE command to deallocate the

ddname when required.

 For authorized commands and programs to be invoked from a library read

“Further considerations” on page 359.

 Using a ddname, compared to a dsname or a list of dsnames, allows for a

greater number of libraries to be activated. Use the ALLOCATE command to

associate up to 255 data sets with a ddname; then issue TSOLIB ACTIVATE

FILE(ddname).

UNCOND | COND

controls the way TSOLIB is to treat an ACTIVATE request if previous requests

have been performed.

UNCOND

(the default) indicates that the activation request is to be done

unconditionally. Any active request is temporarily deactivated and stacked

for later re-activation. See “Stacking load module and program object library

requests” on page 360 for more information about stacking library activation

requests, and “TSOLIB command examples” on page 363.

 Note that stacked ddnames remain allocated. See also the description

about the DATASET and FILE operands.

TSOLIB Command

Chapter 1. TSO/E commands and subcommands 361

COND

indicates that the activate request is to be successful if no other request is

active. Otherwise, the activate request is unsuccessful, a message is

displayed, and a non-zero return code is set.

RESET | RES

excludes all specified libraries, set with the ACTIVATE operand, back to the

standard search order. The search order for library load modules is now the

same as it was before any TSOLIB command was given.

DISPLAY | DISP | DIS

issues information about the currently active ddname that is in front of the

standard search order and those still on the stack, which will become the active

ones, one after the other, with each following TSOLIB DEACTIVATE command.

 If other task libraries became active after TSOLIB activated a library, for

example, ISPF was started with ISPLLIB, the DISPLAY operand issues

information about the situation.

QUIET

indicates that you do not want messages from this invocation of the TSOLIB

command displayed.

 The QUIET operand is primarily intended for programs under ISPF that invoke

the TSOLIB command. The programs need access to the messages that

TSOLIB issues, but will not want to display them. Trapping of messages is not

available, and &SYSOUTTRAP cannot be used in a program.

 If ISPF is active, the messages are saved in ISPF shared pool variables:

v Variable IKJTSM contains the number of non-blank messages being returned

from this invocation of the TSOLIB command with the QUIET operand.

v Variable IKJTSM1 contains the first message, IKJTSM2 the second message,

and so on. Up to 99 messages are saved in variables IKJTSM1 through

IKJTSM99.

The variables contain the actual messages that TSOLIB would have

displayed if invoked without the QUIET operand. The lengths of the

messages are not restricted to 80 characters.

The ISPF shared pool variables are only set when needed. They are not

blanked out when not needed.

 QUIET does not take effect until after the content of the command buffer,

holding this invocation of the TSOLIB command, is known to be syntactically

correct. If the command parser finds an error, or needs to prompt for input, it

will issue messages and obtain input from the terminal as necessary.

Note: Do not use the QUIET option of TSOLIB in the IPCS dialog. IPCS does

not make ISPF services available to TSO/E commands that IPCS invoke.

 If you invoke the TSOLIB command without specifying an operand, TSOLIB will

assume the ACTIVATE and DATASET operands and prompt you for the missing

information. Note that prompting restricts you to a single data set name. You cannot

enter a list of dsnames.

Entering only the significant characters can abbreviate operands. However, you

might need to clarify reasons for the abbreviations shown.

TSOLIB Command

362 z/OS V1R9.0 TSO/E Command Reference

TSOLIB command return codes

 Table 55. TSOLIB command return codes

0 Processing successful. A load module or program object library, or a list

of load module libraries, has been successfully activated, deactivated, or

reset. However, informational messages may have been issued, for

example, IDY00020I Unable to free previously allocated data sets.

Enter ? for more information.

4 A TSOLIB library does not exist for this type (when deactivating a

TSOLIB library).

8 A load module library already exists for this type when the COND

operand is used.

16 The load module library specified with the TSOLIB ACTIVATE command

was not previously allocated.

20 Severe error. More information is contained in the messages.

24 Internal processing error. TSOLIB is either unable to establish a

recovery environment or encountered an error processing a TSOLIB

installation exit.

28 Environment error. TSOLIB was not invoked in a TSO/E READY

environment.

32 Environment error. TSOLIB was not invoked as a command processor.

TSOLIB command examples

Example 1: Activate a single data set

Operation: Activate a single data set ’sys3.loadlib1’ using the ACTIVATE

DATASET operand of TSOLIB. Use the TSOLIB DISPLAY operand to display the

current search order. Assume no previous request has been issued before.

TSOLIB ACTIVATE DATASET(’sys3.loadlib1’)

TSOLIB DISPLAY

IDY00022I Search order (by DDNAME) is:

IDY00023I DDNAME = SYS00101

Note that the system has created a ddname of SYS00101 for the activated load

module library.

Example 2: Activate a concatenation of data sets

Operation: Activate data sets ’sys3.loadlib1’ and ’sys3.testlib’ using the

ACTIVATE DATASET operand of TSOLIB. Use the TSOLIB DISPLAY operand to

display the current search order. Assume no previous request has been issued

before.

TSOLIB ACTIVATE DATASET(’sys3.loadlib1’ ’sys3.testlib’)

TSOLIB DISPLAY

IDY00022I Search order (by DDNAME) is:

IDY00023I DDNAME = SYS00101

Note that the system has created a ddname of SYS00101 for the concatenated

load module libraries.

Example 3: Activate an allocated File

Operation: (1) Allocate data set my.load and specify the ddname aalib to be

associated with it, (2) activate ddname aalib with the TSOLIB ACTIVATE

command, and (3) use the TSOLIB DISPLAY command to display to current search

order. Assume no previous request has been issued before.

TSOLIB Command

Chapter 1. TSO/E commands and subcommands 363

ALLOCATE FILE(aalib) DATASET(my.load)

TSOLIB ACTIVATE FILE(aalib)

TSOLIB DISPLAY

IDY00022I Search order (by DDNAME) is:

IDY00023I DDNAME = AALIB

Note: ALLOCATE command assumes OLD, which causes exlussive access,

because it does not have NEW, OLD, MOD or SHR.

Example 4: Activate a data set from within a CLIST

Operation: Activate data set ’JIM.LOAD’ from within a CLIST running in TSO/E

READY environment.

PROC 0

TSOLIB ACTIVATE DATASET(’JIM.LOAD’)

IF &LASTCC = 0 THEN +

 ... process commands and programs from TSOLIB data set. ...

Example 5: Activate an allocated file from within a REXX Exec

Operation: (1) Allocate data set ’JIM.LOAD’ and specify the ddname MYLOAD to be

associated with it, (2) activate ddname aalib with the TSOLIB ACTIVATE FILE

command. Note that the REXX exec is to run in a TSO/E READY environment.

/* rexx */

"ALLOCATE FILE(MYLOAD) DATASET(’JIM.LOAD’) SHR"

if RC = 0 then

 push "TSOLIB ACTIVATE FILE(MYLOAD)"

exit ...
 ... back in TSO/E READY environment, start the REXX exec ...
 ... invoke commands and programs from TSOLIB data set. ...

Example 6: The use of TSOLIB library stacking

Operation: Activate data set ’sys3.loadlib1’ using the ACTIVATE DATASET

operand of TSOLIB. Use the TSOLIB DISPLAY operand to display the current

search order. Assume no previous request has been issued before.

TSOLIB ACTIVATE DATASET(’sys3.loadlib1’)

TSOLIB DISPLAY

IDY00022I Search order (by DDNAME) is:

IDY00023I DDNAME = SYS00101

Note that the system has created a ddname of SYS00101 for the activated load

module library.

Operation: Activate another data set ’sys3.loadlib2’ using the ACTIVATE

DATASET operand of TSOLIB. Use the TSOLIB DISPLAY operand to display the

currently active and stacked ddnames.

TSOLIB ACTIVATE DATASET(’sys3.loadlib2’)

TSOLIB DISPLAY

IDY00022I Search order (by DDNAME) is:

IDY00023I DDNAME = SYS00102

IDY00024I DDNAME = SYS00101 (Stacked)

Note that the system has created a ddname of SYS00102 for the activated load

module library. The previously activated ddname SYS00101 is temporarily

deactivated and marked (Stacked).

TSOLIB Command

364 z/OS V1R9.0 TSO/E Command Reference

Operation: (1) Allocate a third data set my.load and specify the ddname aalib to

be associated with it, (2) activate ddname aalib with the TSOLIB ACTIVATE

command, and (3) use the TSOLIB DISPLAY command to display the currently

active and stacked ddnames.

ALLOCATE FILE(aalib) DATASET(my.load)

TSOLIB ACTIVATE FILE(aalib)

TSOLIB DISPLAY

IDY00022I Search order (by DDNAME) is:

IDY00023I DDNAME = AALIB

IDY00024I DDNAME = SYS00102 (Stacked)

IDY00024I DDNAME = SYS00101 (Stacked)

The previously activated ddname SYS00102 is temporarily deactivated and marked

(Stacked) in addition to SYS00101. Ddname AALIB is the active library included

ahead of the standard search order.

Example 7: The use of the TSOLIB COND operand

Operation: Based on “Example 6: The use of TSOLIB library stacking” on page

364, try to activate ddname trylib with the COND operand.

ALLOCATE FILE(trylib) DATASET(your.load)

TSOLIB ACTIVATE FILE(trylib) COND

IDY00015I TSOLIB terminated. Load library already active

 and COND keyword was specified. ...
TSOLIB DISPLAY

IDY00022I Search order (by DDNAME) is:

IDY00023I DDNAME = AALIB

IDY00024I DDNAME = SYS00102 (Stacked)

IDY00024I DDNAME = SYS00101 (Stacked)

The activate request is unsuccessful; the previous activation remains unchanged.

Example 8: Reactivate a TSOLIB library from the stack

Operation: Based on “Example 6: The use of TSOLIB library stacking” on page

364, (or “Example 7: The use of the TSOLIB COND operand”) exclude the currently

active library AALIB and activate the last one stacked (SYS00102).

TSOLIB DEACTIVATE

TSOLIB DISPLAY

IDY00022I Search order (by DDNAME) is:

IDY00023I DDNAME = SYS00102

IDY00024I DDNAME = SYS00101 (Stacked)

Example 9: The use of the TSOLIB QUIET operand

Operation: (1) Activate a single data set ’aalib.load’, to which the system

associates a ddname of SYS00100, (2) activate a concatenation of data sets, to

which the system associates a ddname of SYS00101, (3) and invoke a REXX exec

to show use of the QUIET operand when ISPF is active.

The contents of the variables in the ISPF shared pool are then examined. Assume

no previous request has been issued before.

READY

TSOLIB ACTIVATE DATASET(mylib.load)

TSOLIB ACTIVATE DATASET(’sys3.loadlib1’ ’sys3.testlib’)

Invoke the following REXX exec when ISPF is active:

TSOLIB Command

Chapter 1. TSO/E commands and subcommands 365

/* rexx */

ADDRESS TSO

"TSOLIB DISPLAY QUIET" ...

The ISPF shared pool variables are now set as follows:

Variable Content

IKJTSM 4

IKJTSM1 TSOLIB DISPLAY QUIET

IKJTSM2 IDY00022I Search order (by DDNAME) is:

IKJTSM3 IDY00023I DDNAME = SYS00101

IKJTSM4 IDY00024I DDNAME = SYS00100 (Stacked)

VLFNOTE command

When you change data that is shared across systems and managed by the virtual

lookaside facility (VLF), you might need to enter the VLFNOTE command to notify

VLF of the change. VLF needs to know when you make changes to the data it

manages so that it can make current data available for users. The types of data

VLF manages are:

v Data in a partitioned data set (PDS) or partitioned data set extended (PDSE)

v A named collection of data (non-PDS)

Note: The term partitioned data set (PDS) in the following VLFNOTE description

refers to PDS and PDSE data sets.

The type of data and the system environment determine whether you need to enter

VLFNOTE.

You do not need to use VLFNOTE (because notification to VLF is automatic) when

both of the following are true:

v VLF is running on z/OS systems and are part of a single sysplex.

v The changed data belongs to a partitioned data set class.

When both conditions are true, VLF receives notification automatically through

sysplex services. (z/OS MVS Setting Up a Sysplex describes running VLF in a

sysplex.) Otherwise, you need to enter VLFNOTE.

The types of changes that require VLF notification are listed below:

For data in a PDS, enter VLFNOTE when you are:

v Adding a member to an eligible data set (a data set that is identified to VLF).

v Adding a member to a non-eligible data set when both of the following are true:

– The new member is in a user’s SYSPROC concatenation ahead of an eligible

data set.

– The eligible data set has a member with the same name as the new member.

v Updating an existing member of an eligible data set.

v Deleting an eligible data set or member of an eligible data set.

To notify VLF about changes to data in a PDS, use the VLFNOTE command syntax

described in “Changing data associated with a partitioned data set” on page 367.

TSOLIB Command

366 z/OS V1R9.0 TSO/E Command Reference

For non-PDS data, use VLFNOTE when you are:

v Adding a minor name to a major name.

v Updating a minor name associated with a major name.

v Deleting a minor name from a major name.

To notify VLF about changes to non-partitioned data, use the VLFNOTE command

syntax described in “Changing non-PDS data” on page 368.

There are several ways to issue the VLFNOTE command. Depending on the

method available at your installation you can:

v Logon to each of the other systems in your complex and enter VLFNOTE.

v Send a message to a user on each of the other systems in your complex and

have them enter VLFNOTE.

v Submit a short batch job, with system affinity, to each of the other systems in

your complex and issue VLFNOTE in the job.

v If your installation is using APPC/MVS, write an APPC/MVS transaction program

to prompt the affected systems to issue the VLFNOTE command. Each of the

affected systems must have an APPC/MVS transaction program that will issue

the VLFNOTE command.

See z/OS MVS Programming: Authorized Assembler Services Guide, for more

information about VLF notification.

Changing data associated with a partitioned data set

Use the following syntax to notify VLF that you have changed a partitioned data set.

To notify VLF that you have changed non-PDS data, see “Changing non-PDS data”

on page 368 for the correct syntax.

Note: For partitioned data set changes, the VLFNOTE command needs to be

issued on each system in the shared DASD complex, except for the system

on which the change was made. VLF is automatically notified on the system

on which the change was made.

VLFNOTE command syntax (partitioned data set)

�� VLFNOTE ADD

DELETE

UPDATE

 DATASET(partitioned_data_set_name)

DSNAME(partitioned_data_set_name)
 �

�
(member_name)

VOLSER(volume_serial)
 ��

VLFNOTE command operands (partitioned data set)

ADD

specifies that you have added a member to a partitioned data set.

DELETE

specifies that you have deleted a partitioned data set or a member of a

partitioned data set.

UPDATE

specifies that you have updated a member of a partitioned data set.

VLFNOTE Command

Chapter 1. TSO/E commands and subcommands 367

DATASET | DSNAME (partitioned_data_set_name [(member_name)])

specifies the name of the partitioned data set that you changed. Include the

member name if you have added, deleted or updated a member.

VOLSER(volume_serial)

specifies the volume on which the changed partitioned data set resides. If you

do not include VOLSER, VLF uses the catalog to determine the volume serial

where the data set resides.

VLFNOTE command examples (partitioned data set)

Example 1

Operation: Notify VLF that you deleted member MAKEMEMO of partitioned data

set ‘COMMON.TOOLS.CLIST’

vlfnote delete dataset(‘common.tools.clist(makememo)’)

Example 2

Operation: Notify VLF that you renamed a member, X, of a CLIST data set

“YOURID.TAILORED.CLIST”. It is now called NEWX. Delete the old member name

and add the new member name.

vlfnote delete dataset(tailored.clist(X))

and

vlfnote add dataset(tailored.clist(newx))

Changing non-PDS data

Use this syntax to notify VLF that you changed non-PDS data (data that belongs to

a CLASS-MAJOR or CLASS-MAJOR-MINOR combination). The specified class

name must be an installation-supplied class name. To notify VLF that you changed

a partitioned data set see “Changing data associated with a partitioned data set” on

page 367 for the correct syntax.

VLFNOTE command syntax (non-PDS)

�� VLFNOTE ADD

DELETE

UPDATE

 CLASS(class_name) MAJOR(major_name) �

� MINOR(minor_name) ��

VLFNOTE command operands (non-PDS)

ADD

specifies that you have added a minor name to a major name.

DELETE

specifies that you have deleted a minor name from a major name or that you

have deleted a major name from an installation-supplied class.

UPDATE

specifies that you have updated a minor name associated with a major name.

CLASS(class_name)

specifies the name of an installation-supplied class (class name beginning with

a letter from H - Z) affected by the change you made.

VLFNOTE Command

368 z/OS V1R9.0 TSO/E Command Reference

MAJOR(major_name)

specifies the major name associated with the change you made.

MINOR(minor_name)

specifies the minor name associated with the change you made.

VLFNOTE command examples (non-PDS)

Example 1

Operation: Notify VLF that non-PDS data has been deleted.

vlfnote delete class(myclass1) major(major1) minor(minor1)

Example 2

Operation: Notify VLF that you deleted major name “NOTICE”, of the

installation-supplied class “MYCLASS”.

vlfnote delete class(myclass) major(notice)

VLFNOTE command return codes

 Table 56. VLFNOTE command return codes

0 Processing successful.

12 Return code 12 means one of the following:

v Incorrect syntax was specified for the command.

v The invoked VLF function returned a non-zero return code.

v The TSO/E parse service routine or the TSO/E catalog information

routine returned a non-zero return code.

v Unauthorized for specific request.

Error messages indicate the exact problem.

WHEN command

Use the WHEN command to test return codes from programs invoked by an

immediately preceding CALL or LOADGO command, and to take a prescribed

action if the return code meets a certain specified condition.

WHEN command syntax

��

WHEN

SYSRC(operator integer)
 END

command_name

��

WHEN command operands

SYSRC

specifies the return code from the previous function (the previous command in

the CLIST) is to be tested according to the values specified for operator and

integer.

operator

specifies one of the following operators:

EQ or = means equal to

NE or ¬= means not equal to

GT or > means greater than

VLFNOTE Command

Chapter 1. TSO/E commands and subcommands 369

LT or < means less than

GE or >= means greater than or equal to

NG or ¬> means not greater than

LE or <= means less than or equal to

NL or ¬< means not less than

integer

specifies the numeric constant that the return code is to be compared to.

END

specifies processing is to be terminated if the comparison is true. If you do not

specify a command, END is the default.

command_name

specifies any valid TSO/E command name and appropriate operands. If the

comparison is true, TSO/E processes the command.

 WHEN terminates CLIST processing and then executes the TSO/E command name

specified.

Use successive WHEN commands to determine an exact return code and then

perform some action based on that return code.

WHEN command return code

The return code is from the command that executed last.

WHEN command examples

Example 1

Operation: Use successive WHEN commands to determine an exact return code.

CALL compiler

WHEN SYSRC(= 0) EXEC LNKED

WHEN SYSRC(= 4) EXEC LNKED

WHEN SYSRC(= 8) EXEC ERROR

WHEN Command

370 z/OS V1R9.0 TSO/E Command Reference

Chapter 2. Session Manager commands

Entering Session Manager commands 371

Command format . 372

Session Manager Command syntax 373

Defaults . 373

Abbreviations . 373

Session Manager Command summary 373

CHANGE.CURSOR command 375

CHANGE.CURSOR command syntax 375

CHANGE.CURSOR command operands 375

CHANGE.CURSOR command return codes 376

CHANGE.CURSOR command examples 376

CHANGE.FUNCTION command 376

CHANGE.MODE command 379

CHANGE.PFK command . 379

CHANGE.STREAM command 381

CHANGE.TERMINAL command 382

CHANGE.WINDOW command 383

DEFINE.WINDOW command 386

DELETE.WINDOW command 389

END command . 389

FIND command . 390

PUT command . 391

QUERY command . 393

RESET command . 396

RESTORE command . 396

SAVE command . 397

SCROLL command . 399

SNAPSHOT command . 401

UNLOCK command . 402

This chapter describes the functions and syntax of each Session Manager

command. It includes:

v The general format and syntax rules for the commands.

v A description of the function and syntax for each command. The commands are

described in alphabetical order.

Introductory information about how to use and start Session Manager at your

terminal is described in z/OS TSO/E User’s Guide.

Entering Session Manager commands

You can enter Session Manager commands by:

v Pressing the CLEAR key and entering a command anywhere on the screen

v Pressing a program function (PF) key set up to issue a command

v Executing a TSO/E CLIST, which contains commands

v Defining the command as the text_string of the SMPUT command

Regardless of how you enter the commands, the following rules apply:

v You can enter multiple Session Manager commands on one line provided you

separate them with a semicolon (;). The number of characters on any one line

© Copyright IBM Corp. 1988, 2007 371

cannot exceed 512. When multiple commands are entered on a line, an error in

one command does not prevent the remaining commands from executing.

v In order for a Session Manager command to execute, it must be placed in the

SMIN stream.

v Any change you make to the definitions of the windows, cursor, PF keys, session

functions, streams, or the terminal, remain in effect for your terminal session. You

can place these definitions in a CLIST to be executed each time you log on.

Command format

A Session Manager command consists of a command name, typically followed by a

command modifier and one or more operands.

A command name is typically a familiar English word that describes the function of

the command. Some command names are followed by command modifiers, which

qualify the action of the command name.

Operands provide specific information about how an operation is to be performed.

The two types of operands used with Session Manager commands are positional

and keyword.

 command.modifier one or more blanks operand, operand, ...

You must separate the command name and command modifier with a period or one

or more blanks. Also separate the command or command modifier from the first

operand by one or more blanks.

The command descriptions include some operands in lowercase letters and some in

uppercase letters. If the operand is in lowercase letters, you must substitute a

specific value for the letters. For example, in the command

CHANGE.PFK pfk_number ...

you must replace pfk_number with the number of the program function (PF) key to

be changed.

CHANGE.PFK 1 ...

Lowercase operands are positional operands because they follow the command

names or modifiers in a prescribed order.

The operands in uppercase letters are keyword operands. You must type those

operands as shown. For example:

ALARM(ON)

CONTROL(seconds)

Both of the preceding keyword operands have subfield values enclosed in

parentheses. You must type the keyword (or its abbreviation), a left parenthesis,

and then the subfield value. You can omit the closing parenthesis if it is the last

character of the command.

The ALARM keyword shows the only possible subfield value within the parentheses.

The CONTROL operand shows the subfield value in lowercase letters. Therefore,

you are to substitute a value for the lowercase name.

Entering Session Manager Commands

372 z/OS V1R9.0 TSO/E Command Reference

Session Manager Command syntax

The command syntax for Session Manager commands is represented using

structured diagrams. This method of syntax representation is described in “How to

read the TSO/E command syntax” on page 10.

Defaults

To make the commands easier to enter, certain operands default to a specific value.

If the default value is the value you want to use, you do not have to enter the

operand. The default values are underlined in the syntax description for each

command.

Many Session Manager commands refer to a default window. The default window is

the MAIN window or the window you have assigned as the default window via the

CHANGE.TERMINAL command.

Abbreviations

You can abbreviate nearly all Session Manager command names, modifiers, and

keyword operands. These abbreviations can be as short as possible, while still

providing uniqueness among them. For example, the minimum abbreviation for the

DELETE command is:

DEL

DEL distinguishes DELETE from the DEFINE command.

The exceptions to this rule are the following frequently used commands:

DEFINE D

SCROLL S

RESTORE R

You can also abbreviate any keyword operand. For example, the keyword operands

of the CHANGE.WINDOW command and their minimum abbreviations are:

ALARM A

HOLD H

OVERLAP O

PROTECT P

TARGET T

UPDATE U

VIEW V

The Session Manager also accepts the following commonly used abbreviations:

CONTROL CNTL

FORMAT FMT

Session Manager Command summary

Table 57 summarizes the Session Manager commands and their functions.

 Table 57. Summary of the Session Manager commands

Command Function

CHANGE.CURSOR Changes the permanent or temporary location of the cursor.

Session Manager Command syntax

Chapter 2. Session Manager commands 373

Table 57. Summary of the Session Manager commands (continued)

Command Function

CHANGE.FUNCTION Changes whether the terminal’s audible alarm is to sound when

information enters an input or output stream.

Specifies whether information from an input stream is to be copied

to an output stream and the intensity at which the information is to

be displayed.

Specifies the input stream for a session function.

Specifies the output stream for a session function and the intensity

at which the information is to be displayed.

CHANGE.MODE Indicates whether you want to run under VS/APL or under the

Session Manager.

CHANGE.PFK Changes the definition of a program function (PF) key.

CHANGE.STREAM Specifies whether the terminal’s audible alarm is to sound when

information enters a given stream.

Erases all of the information in a given stream.

CHANGE.TERMINAL Specifies whether the terminal’s audible alarm is to sound when the

keyboard unlocks.

Specifies the maximum time the keyboard is to be locked while a

command is executing.

Changes the default window.

CHANGE.WINDOW Specifies whether the terminal’s audible alarm is to sound when the

Session Manager scrolls a window to display new information.

Specifies how long a window is to be held in place before the

Session Manager scrolls it.

Specifies how many lines of a window’s old position are to be

repeated when the window scrolls to a new position.

Specifies whether information can be entered in a window.

Indicates the name of the stream that is to receive the information

in a window and the intensity at which the information is to be

displayed.

Indicates how much new information must enter a stream before

the window scrolls to display it.

Specifies the name of the stream a window is to display.

DEFINE.WINDOW Defines a new window on the display screen.

DELETE.WINDOW Deletes a window from the display screen.

END Ends Session Manager support of your TSO/E session.

FIND Searches for a text string in a stream that is currently displayed by

a window.

Finds the number of the top line being displayed by a window.

PUT Places a text string in a stream and indicates the intensity at which

the text string is to be displayed.

Session Manager Command summary

374 z/OS V1R9.0 TSO/E Command Reference

Table 57. Summary of the Session Manager commands (continued)

Command Function

QUERY Displays information about:

v TSO, SM, and MSG functions

v Program function (PF) keys

v Streams

v Terminal

v Windows

RESET Restarts the Session Manager display environment.

RESTORE Restores the definitions of the following, which were saved through

the SAVE command:

v Program function (PF) keys

v Screen layout

v Windows

SAVE Saves the definitions of the following:

v Program function (PF) keys

v Screen layout

v Windows

SCROLL Moves a window over a stream.

SNAPSHOT Copies a display screen of information into a stream.

UNLOCK Unlocks a window.

CHANGE.CURSOR command

Use the CHANGE.CURSOR command to change the location of the cursor on the

display screen. You can establish a permanent or temporary location for the cursor.

If you define a permanent location, the cursor returns to that location each time you

press a program function (PF) key, the Enter key, the attention (PA1) key, the

CLEAR key or the cancel (PA2) key. If you define a temporary location, the cursor

moves to and remains at that location until the next keyboard entry. After the

keyboard entry, the cursor moves to the permanent location.

CHANGE.CURSOR command syntax

��

CHANGE.CURSOR

C.C

C C

1

1

row

column

 default_window

window_name

�

�
TEMPORARY

 ��

CHANGE.CURSOR command operands

row column

The location in the specified window where the cursor is to go. The row and

column numbers are relative to those in the window, not the entire display

screen. If you specify a number for row that is greater than the number of lines

in the window, the Session Manager uses the last row in the window. If you

specify a number for column that is greater than the number of columns in the

window, the Session Manager adjusts the column value to the number of

Session Manager Command summary

Chapter 2. Session Manager commands 375

columns in the window minus one. If you specify 0 or a negative number for

row or column, the Session Manager places the cursor in the first row and

column in the window.

window_name

The name of the window where the cursor is to be placed.

TEMPORARY

specifies that this change to the cursor location is to be temporary. If both the

row and column and window_name operands are omitted, and a temporary

location for the cursor was previously set, the Session Manager moves the

cursor to that location. If a temporary location was not previously set, the

Session Manager moves the cursor to the upper left hand corner of the display

screen.

 Unless you specify TEMPORARY, the change is permanent.

CHANGE.CURSOR command return codes

 Table 58. CHANGE.CURSOR command return codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

CHANGE.CURSOR command examples

Example 1

Set the permanent location of the cursor to row 5, column 3 of the TEST window.

change.cursor 5 3 test

Example 2

Set the temporary location of the cursor to row 2, column 1 of the ENTRY window.

change.cursor 2 1 entry temporary

Example 3

Set the cursor to the temporary location that was set in a previous

CHANGE.CURSOR command.

change.cursor temporary

Example 4

Change the permanent location of the cursor to row 1, column 1 of the default

window.

change.cursor

CHANGE.FUNCTION command

Use the CHANGE.FUNCTION command to:

v Change whether the terminal’s audible alarm is to sound when information enters

an input or output stream

v Specify whether information from an input stream is to be copied to an output

stream and the intensity at which the information is to be displayed

v Specify the input stream for the TSO, Session Manager (SM), or message (MSG)

functions

CHANGE.CURSOR Command

376 z/OS V1R9.0 TSO/E Command Reference

v Specify the output stream for a session function and the intensity at which the

information is to be displayed

CHANGE.FUNCTION command syntax

�� CHANGE.FUNCTION

C.F

C F

 MSG

SM

1

TSO

OUTPUT(stream_name

)

intensity

SM

Copy

TSO

INPUT(stream_name)

 �

�
ALARM(

INPUT

)

OUTPUT

NO

 ��

Copy

1

COPY(stream_name

)

intensity

NOCOPY

CHANGE.FUNCTION command operands

MSG

requests that the change apply to the message (MSG) function. The MSG

function represents the messages from other TSO/E users, the operator, and

background jobs.

SM

requests that the change apply to the Session Manager (SM) function. The SM

function represents work related to the Session Manager.

TSO

requests that the change apply to the TSO function. The TSO function

represents work related to TSO.

OUTPUT(stream_name intensity)

stream_name

The name of the output stream for the specified function.

intensity

specifies the brightness at which the information is to be displayed in the

output stream. The valid values are:

1 The information is to be displayed at normal intensity.

2 The information is to be highlighted.

INPUT(stream_name)

The name of the input stream for the specified function.

COPY(stream_name intensity) | NOCOPY

COPY(stream_name intensity)

requests that the Session Manager copy the input stream for this function

into an output stream.

CHANGE.FUNCTION command

Chapter 2. Session Manager commands 377

stream_name

is the name of the output stream that is to contain a copy of the

information from the input stream.

intensity

specifies the brightness at which the copied information is be displayed.

The valid values are:

0 The copied information is not to be displayed. You can see the line

that the information occupies, but the information itself is invisible.

1 The copied information is to be displayed at normal intensity.

2 The copied information is to be highlighted.

NOCOPY

specifies that the Session Manager is not to copy the information from the

input stream into an output stream.

ALARM(INPUT | OUTPUT | NO)

specifies whether the terminal’s audible alarm is to sound when information

enters a stream. The stream does not have to be currently displayed for the

alarm to sound. You can set ALARM to sound for either the input stream or the

output stream, but not both.

Note: If your terminal does not have an audible alarm, the Session Manager

still accepts this operand. It has no way of knowing whether your

terminal has an audible alarm.

INPUT

specifies that the audible alarm is to sound when a line of information

enters the input stream for the specified function.

OUTPUT

specifies that the audible alarm is to sound when the a line of information

enters the output stream for the specified function.

NO

specifies that the audible alarm is not to sound when information is added

to any of the function streams.

CHANGE.FUNCTION command return codes

 Table 59. CHANGE.FUNCTION command return codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

CHANGE.FUNCTION command examples

Example 1: Define the MSG function so that all messages are highlighted in the

TSOOUT stream and the terminal’s audible alarm sounds when you receive a

message.

change.function msg output(tsoout 2) alarm(output)

Example 2: Set the Session Manager function to get commands from the SMIN

stream and place the output from these commands in the SMOUT stream

highlighted. The information in the SMIN stream is not to be copied to the SMOUT

stream.

CHANGE.FUNCTION command

378 z/OS V1R9.0 TSO/E Command Reference

change.function sm input(smin) output(smout 2) nocopy

Example 3: Set the SM function to copy the SMIN stream into the SMOUT

stream.

change.function sm copy(smout)

Example 4: Set the TSO function to get its input from the TSOIN stream and

highlight its output in the TSOOUT stream. The information in the TSOIN stream is

to be copied into the TSOOUT stream.

change.function tso input(tsoin) output(tsoout 2)

 copy(tsoout)

CHANGE.MODE command

Use the CHANGE.MODE command to indicate whether you want to run under

VS/APL or the Session Manager.

CHANGE.MODE command syntax

�� CHANGE.MODE

C.M

C M

 APL

SM
 ��

CHANGE.MODE command operands

APL

indicates that you are running VS/APL and you want the Session Manager to

provide any additional functions that were designed specifically to enhance the

interface between the Session Manager and VS/APL.

Note: To use a VS/APL program function (PF) key definition, first make the

corresponding Session Manager PF key definition null. To find out how to

make a PF key null, refer to the CHANGE.PFK command.

SM

indicates that you are running under the Session Manager.

CHANGE.MODE command return codes

 Table 60. CHANGE.MODE command return codes

0 Processing successful.

4 Syntax error in command.

CHANGE.MODE command examples

Example 1: Change the mode to run under VS/APL.

change.mode apl

CHANGE.PFK command

Use the CHANGE.PFK key to change the definition of a program function (PF) key.

You can define a PF key to issue one or more Session Manager commands, TSO/E

commands, input to an application program, or any other string of characters.

CHANGE.FUNCTION command

Chapter 2. Session Manager commands 379

CHANGE.PFK command syntax

�� CHANGE.PFK

C.P

C P

 pfk_number definition_text_string stream_name �

�
&

b

SUBSTITUTE(

identifier

)

delimiter

 ��

CHANGE.PFK command operands

pfk_number

The number of the PF key to be changed. If you specify a number that does not

exist on your terminal, the Session Manager still accepts this operand. It has no

way of knowing how many PF keys you have.

definition_text_string

The string of characters that are to be placed in the specified stream. If the text

string contains lowercase letters, blanks, commas, or parentheses, enclose it in

single quotation marks. A single quote mark in the text string must be

represented as two adjacent quotation marks.

 If there are no blanks, commas, or parentheses in the text string, you can omit

the enclosing quotation marks. If you omit the quotation marks, however, the

Session Manager translates the text string to uppercase letters. When using the

CHANGE.PFK command in a CLIST, the Session Manager always stores the

text string in uppercase letters, even if it is enclosed in quotation marks.

 If you enter more than one command for the text string, separate them with a

semicolon (;).

 If you want to use a PF key defined under some other 3270 application (for

example, VS/APL), first define the definition_text_string for the PF key as null to

the Session Manager. The PF key can then be passed back to the application.

To specify a null PF key, define the definition_text_string as two adjacent

quotation marks ('').

stream_name

The name of the stream where the text string is to be placed.

SUBSTITUTE

specifies that the information read from the screen is to be substituted into the

‘definition_text_string’, replacing the symbolic arguments.

identifier

identifies the symbolic argument that is to be replaced. Any character

(except a blank or comma) can be used as the identifier. If the identifier

character appears elsewhere in the definition_text_string, it must be

doubled.

delimiter

separates the information about the screen that is to be substituted into the

text string. One or more blanks are treated as a single delimiter. The

delimiter can be any character except a comma.

CHANGE

380 z/OS V1R9.0 TSO/E Command Reference

CHANGE.PFK command return codes

 Table 61. CHANGE.PFK command return codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

CHANGE.PFK command examples

Example 1: Change PF1 to place the TSO/E TIME command in the TSOIN

stream where it will be executed.

change.pfk 1 ’time’ tsoin

Example 2: Change PF12 to issue the QUERY.TERMINAL command. Direct the

output to the EXTRA1 stream and cause the default window to display that stream.

change.pfk 12 ’query.terminal extra1;change.window

 view(extra1)’ smin

Example 3: Change PF2 to issue the TSO/E LISTDS command. Each line typed

just before the key is pressed is to be substituted as the data set name operand for

the command.

change.pfk 2 ’listds &1;.* members’ tsoin substitute

If you type the following on the screen:

test

sample

and pressed PF2, the following TSO/E commands are executed:

listds test.* members

listds sample.* members

CHANGE.STREAM command

Use the CHANGE.STREAM command to:

v Change whether the terminal’s audible alarm is to sound when information enters

a stream

v Erase all of the information in a stream

(Use the QUERY.STREAMS command to display the names and attributes of all of

the streams.)

CHANGE.STREAM command syntax

�� CHANGE.STREAM

C.S

C S

 stream_name

ALARM(

YES

)

NO

CLEAR
 ��

CHANGE.STREAM command operands

stream_name

The name of the stream to be changed.

ALARM(YES | NO)

specifies whether the terminal’s audible alarm is to sound when information

enters the stream. The stream does not have to be currently displayed for the

CHANGE

Chapter 2. Session Manager commands 381

alarm to sound. If your terminal does not have an audible alarm, the Session

Manager still accepts this operand. It has no way of knowing whether your

terminal has an alarm.

CLEAR

erases all of the information in the stream. The stream itself is not erased.

CHANGE.STREAM command return codes

 Table 62. CHANGE.STREAM command return codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

CHANGE.STREAM command examples

Example 1: Set the display terminal’s audible alarm to sound when information

goes into the EXTRA1 stream.

change.stream extra1 alarm(yes)

Example 2: Erase all information in the TSOOUT stream.

change.stream tsoout clear

CHANGE.TERMINAL command

Use the CHANGE.TERMINAL command to:

v Specify whether the audible alarm is to sound when the keyboard unlocks

v Indicate the maximum time the keyboard is to be locked while a command is

executing

v Change the default window

CHANGE.TERMINAL command syntax

�� CHANGE.TERMINAL

C.T

C T

ALARM(

YES

)

NO

CONTROL(

LAST

)

seconds

 �

�
DEFAULT(window_name)

 ��

CHANGE.TERMINAL command operands

ALARM(YES | NO)

specifies whether the terminal’s alarm is to sound when the keyboard unlocks.

When the keyboard is unlocked, you can enter input. If your terminal does not

have an audible alarm, the Session Manager still accepts this operand. It has

no way of knowing whether your terminal has an alarm.

CONTROL(LAST | seconds)

specifies the maximum time, in seconds, that the keyboard is to remain locked.

The Session Manager sets a timer to unlock the terminal keyboard when the

time expires. Note, however, that when the keyboard is locked, you cannot

enter commands, and attention interrupts will not be processed.

CHANGE

382 z/OS V1R9.0 TSO/E Command Reference

LAST

specifies that the timer is to be set to the last non-zero value entered for

the CONTROL keyword of this command.

seconds

specifies that the keyboard is to be unlocked after the specified number of

seconds has elapsed. seconds must be an integer from 0 to 999.

DEFAULT(window_name)

The name of the window that you want to be the default window. This window

serves as the default window for other Session Manager commands when a

window name is entered with the command. The MAIN window is the

IBM-supplied default window.

CHANGE.TERMINAL command return codes

 Table 63. CHANGE.TERMINAL command return codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

CHANGE.TERMINAL command examples

Example 1: Set the terminal so that the keyboard will be locked for no more than

10 seconds.

change.terminal control(10)

Example 2: Set the terminal so that each time the keyboard unlocks the audible

alarm sounds.

change.terminal alarm(yes)

Example 3: Set the terminal so that the keyboard will be locked for no more than

15 seconds and set the MAIN window as the default window.

change.terminal control(15) default(main)

CHANGE.WINDOW command

Use the CHANGE.WINDOW command to change the attributes of an existing

window on the display screen. Use the QUERY.TERMINAL or QUERY.WINDOWS

command to display the names and attributes of the currently defined windows.

CHANGE.WINDOW command syntax

��

CHANGE.WINDOW

C.W

C W

 default_window

window_name

ALARM(

YES

)

NO

�

�
HOLD(

INPUT

)

seconds

OVERLAP(lines)

PROTECT(

YES

)

NO

 �

CHANGE

Chapter 2. Session Manager commands 383

�
1

TARGET(stream_name

)

intensity

UPDATE(

LINE

)

NEWEST

PAGE

 �

�
VIEW(stream_name)

 ��

CHANGE.WINDOW command operands

window_name

The name of the window whose attributes are to be changed.

ALARM(YES | NO)

specifies whether the terminal’s audible alarm is to sound when the Session

Manager places new information in the stream. If your terminal does not have

an audible alarm, the Session Manager still accepts this operand. It has no way

of knowing whether your terminal has an alarm.

HOLD(INPUT | seconds)

specifies how long the window (when unlocked) is to be held in place before it

is scrolled toward the bottom of the stream.

INPUT

specifies that the window (when unlocked) be held in place until you supply

input by pressing the Enter key or any program function (PF) key.

seconds

specifies that the window (when unlocked) be held in place the specified

number of seconds before it is scrolled toward the bottom of the stream.

seconds must be an integer from 0 to 999.

 During the time the window is held in place, the keyboard remains locked.

The keyboard unlocks when the time expires or when the window displays

the bottom of the stream.

Note: The value specified on the CONTROL operand of the

CHANGE.TERMINAL command overrides the value specified on this

operand.

OVERLAP(lines)

specifies how many lines of the window’s old position are to be repeated when

the window scrolls to a new position.

 lines must be an integer from 0 to 999. If you specify a value for lines that is

greater than or equal to the number of lines in the window, the Session

Manager adjusts lines to be the number of lines in the window minus one.

Thus, at least the bottom line of the window’s old position appears at the top of

the window’s new position.

PROTECT(YES | NO)

specifies whether you can enter data in the window. You can enter data in an

unprotected window only. If you try to enter data in a protected window, the

keyboard locks.

TARGET(stream_name intensity)

CHANGE

384 z/OS V1R9.0 TSO/E Command Reference

stream_name

is the name of the stream that is to receive the information entered in the

window.

intensity

specifies the brightness at which the information in the stream is to be

displayed. The valid values are:

0 The information in the stream is not to be displayed. You can see the

line that the information occupies, but the information itself is invisible.

1 The information is to be displayed at normal intensity.

2 The information is to be highlighted.

UPDATE(LINE | NEWEST | PAGE)

specifies how much new information must enter the stream before the Session

Manager updates the window. The window scrolls only when it is unlocked.

LINE

specifies that the window scroll sequentially toward the bottom of the

stream. Thus, all of the new information is displayed as the window scrolls

over the stream. When the window is full, it scrolls forward (repeating the

number of lines specified by the OVERLAP operand) and the new

information again starts to fill up the window.

NEWEST

specifies that the window always display the newest information in the

stream. When new information enters the stream, the window scrolls

directly to the bottom of the stream. Some information in the stream might

be skipped over. Thus, if a large amount of information is sent to the stream

in a short period of time, only the last few lines (the number of lines in the

window) are displayed.

PAGE

specifies that the window scroll sequentially over the stream when there are

enough new lines of information (minus the number of overlap lines) to fill

the window. The window does not scroll to display the new information until

enough additional information (a “page” of information) enters the stream.

VIEW(stream_name)

The name of the stream the window is to display. Initially, the Session Manager

places the window at the bottom of the stream and unlocks the window.

CHANGE.WINDOW command return codes

 Table 64. CHANGE.WINDOW command return codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

CHANGE.WINDOW command examples

Example 1: Change the TEST window to display the SMOUT stream.

change.window test view(smout)

Example 2: Change the PASSWD window so that TSO/E passwords can be

entered in non-display mode.

change.window passwd target(tsoin 0)

CHANGE

Chapter 2. Session Manager commands 385

Example 3: Change the default window so that input cannot be entered there.

change.window protect(yes)

DEFINE.WINDOW command

Use the DEFINE.WINDOW command to define a new window on the display

screen.

DEFINE.WINDOW command syntax

�� DEFINE.WINDOW

D.W

D W

 window_name row column lines

MAX
 width

MAX

WRAP

 �

�
ALARM(

YES

)

NO

0

HOLD(

INPUT

)

seconds

1

OVERLAP(

lines

)

 �

�
PROTECT(

YES

)

NO

TSOIN

1

TARGET(

stream_name

)

intensity

 �

�
UPDATE(

LINE

)

NEWEST

PAGE

TSOOUT

VIEW(

stream_name

)

 ��

DEFINE.WINDOW command operands

window_name

The name of the window being defined. The name must be 1 to 8 alphanumeric

characters, with the first character alphabetic.

row

specifies which row of the display screen the top line of the window is to

occupy. row must be an integer n or -n, where n can be any number from 1 to

the number of rows on the display screen. An integer of -n is relative to the

bottom of the screen. For example, a row value of -4 on a 24 line screen

means that the top line of the window is to be row 21.

column

specifies which column of the display screen the left side of the window is to

occupy. column must be an integer n or -n, where n can be any number from 1

to the number of columns on the screen. An integer of -n is relative to the right

side of the display screen. For example, a column value of -4 on an 80 column

screen means that the left side of the window is to be in column 77.

lines | MAX

specifies the number of lines in the window. lines must be an integer n or the

character string MAX. The value n can be any number from 1 to the number of

lines on the display screen. MAX indicates that the window is to consist of the

remaining lines on the display screen or until a line is encountered that has

already been defined as part of another window.

width | MAX | WRAP

specifies the number of character positions in each line of the window. width

can be an integer n or the character string MAX or WRAP.

CHANGE

386 z/OS V1R9.0 TSO/E Command Reference

width

can be any number from 1 (or the number defined as the starting column)

to the physical width of the display screen.

MAX

indicates that the width of the window should be determined by the number

of character positions available in the first line of the window (those not

used by another window).

WRAP

indicates that the width of the window is to start from the column value

specified with this command and continue to either the beginning of the

next window or to the last row and column of the screen. WRAP can only

be used when lines is defined as 1.

Note: The first character position in a window is used as a terminal attribute

byte and is protected. Therefore, a window defined with a width of 1 is

useless.

ALARM(YES | NO)

specifies whether the terminal’s audible alarm is to sound when the Session

Manager scrolls the window to display new information in the stream. If your

terminal does not have an audible alarm, the Session Manager still accepts this

operand. It has no way of knowing whether your terminal has an alarm.

HOLD(INPUT | seconds)

specifies how long the window (when unlocked) is to be held in place before it

is scrolled toward the bottom of the stream.

INPUT

specifies that the window (when unlocked) be held in place until you supply

input by pressing the Enter key or any program function (PF) key.

seconds

specifies that the window (when unlocked) be held in place the specified

number of seconds before it is scrolled toward the bottom of the stream.

seconds must be an integer from 0 to 999.

 During the time the window is held in place, the keyboard remains locked. The

keyboard unlocks when the time expires or when the window displays the

bottom of the stream.

Note: The value specified on the CONTROL operand of the

CHANGE.TERMINAL command overrides the value specified on this

operand.

OVERLAP(lines)

specifies how many lines of the window’s old position are to be repeated when

the window scrolls to the new position.

 lines must be an integer from 0 to 999. If you specify a value for lines that is

greater than or equal to the number of lines in the window, the Session

Manager adjusts the value to be the number of lines in the window minus one.

Thus, at least the bottom line of the window’s old position always appears at

the top of the window’s new position.

PROTECT(YES | NO)

specifies whether you can enter data in the window. You can enter data in an

unprotected window only. If you try to enter data in a protected window, the

keyboard locks.

DEFINE

Chapter 2. Session Manager commands 387

TARGET(stream_name intensity)

stream_name

The name of the stream that is to receive the information entered in the

window.

intensity

specifies the brightness at which the information in the stream is to be

displayed. The valid values are:

0 The information in the stream is not to be displayed. You can see the

line that the information occupies, but the information itself is invisible.

1 The information is to be displayed at normal intensity.

2 The information is to be highlighted.

UPDATE(LINE | NEWEST | PAGE)

specifies how much new information must enter the stream before the Session

Manager updates the window. The window scrolls only when it is unlocked.

LINE

specifies that the window scroll sequentially toward the bottom of the

stream. Thus, all of the new information is displayed as the window scrolls

over the stream. When the window is full, it scrolls forward (repeating the

number of lines specified by the OVERLAP operand) and the new

information again starts to fill up the window.

NEWEST

specifies that the window always display the newest information in the

stream. When new information enters the stream, the window scrolls

directly to the bottom of the stream. Some information in the stream might

be skipped over. Thus, if a large amount of information is sent to the stream

in a short period of time, only the last few lines (the number of lines in the

window) are displayed.

PAGE

specifies that the window scroll sequentially over the stream when there are

enough new lines of information (minus the number of overlap lines) to fill

the window. The window does not scroll to display the new information until

enough additional information (a “page” of information) enters the stream.

VIEW(stream_name | TSOOUT)

The name of the stream that the window is to display. Initially, the Session

Manager places the window at the bottom of the stream and unlocks the

window.

DEFINE.WINDOW command return codes

 Table 65. DEFINE.WINDOW command return codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

DEFINE.WINDOW command examples

Example 1:

Note: The display screen for this example contains 24 lines and is 80 columns

wide.

DEFINE

388 z/OS V1R9.0 TSO/E Command Reference

Create a screen layout having an output window occupying the top 22 lines of the

screen with a character width of the entire screen and an input window that

occupies the bottom two lines of the screen but is logically a single line. The output

window is to display the TSOOUT stream and input window is to display the

HEADER stream. All other attributes of the windows are to assume the default

values.

define.window output 1 1 22 max

define.window input -2 1 1 wrap view(header)

DELETE.WINDOW command

Use the DELETE.WINDOW command to delete a window from the display screen.

DELETE.WINDOW command syntax

�� DELETE.WINDOW

D.W

D W

 window_name

*
 ��

DELETE.WINDOW command operands

window_name

The name of the window to be deleted.

* specifies that all of the windows on the display screen are to be deleted. When

all windows are deleted, press the CLEAR key before entering commands from

the keyboard.

DELETE.WINDOW command return codes

 Table 66. DELETE.WINDOW command return codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

DELETE.WINDOW command examples

Example 1: Delete the TEST window.

delete.window test

Example 2: Delete all of the windows on the display screen.

delete.window *

END command

Use the END command to end Session Manager display support of your TSO/E

session. The information in your streams is erased when you issue the END

command. If, after issuing this command, you want to have Session Manager

support again, you must reissue the TSO/E LOGON command.

END command syntax

�� END ��

DEFINE

Chapter 2. Session Manager commands 389

FIND command

Use the FIND command to search for a specific text string in the stream that a

window is displaying or to determine the number of the top line displayed in a

window.

If the Session Manager finds the text string, it scrolls the window so that the line

containing the text string is displayed on the top line of the window and the window

is locked. If the text string is not found, the Session Manager places a message in

the Session Manager output stream. If you issue the FIND command with a null text

string (adjacent quote marks ''), the Session Manager searches for the previous text

string.

For the FIND.LINE command, the Session Manager writes the following message in

the specified window:

ADF031I window_name VIEWING LINE nnnnn

‘nnnnn’ is the top line number in the window.

The FIND.LINE command is useful for finding a line number for the

SCROLL.ABSOLUTE command, for copying a range of lines using the SMCOPY

command, or for locating a text string within a range of lines using the SMFIND

command. The Session Manager does not lock the window when you use the

FIND.LINE command.

FIND command syntax

��

FIND.

F

BACKWARD

'text_string'

B

FORWARD

F

LINE

L

Target

 default_window

window_name

��

Target

 SMOUT

TARGET(

stream_name

)

FIND command operands

BACKWARD

causes the Session Manager to search for the specified text_string from the top

line in the window on the display screen backward toward the top of the stream.

The stream searched is the one displayed in either the default window or the

window specified on the command.

FORWARD

causes the Session Manager to search for the specified text_string from the

current line on the display screen forward toward the bottom of the stream. The

stream searched is the one displayed in either the default window or the

window specified on the command.

FIND command

390 z/OS V1R9.0 TSO/E Command Reference

LINE

causes the Session Manager to find the number of the top line in the default

window or the specified window and writes a message identifying the line

number in the specified stream.

text_string

The string of characters for which Session Manager is to search. If the

text_string contains lowercase letters, blanks, commas, or parentheses, enclose

it in single quotation marks. A single quote mark in the text_string must be

represented as two adjacent quotation marks.

 If there are no blanks, commas, or parentheses in the text_string, you can omit

the enclosing quotation marks. If you omit the enclosing quotation marks,

however, the Session Manager translates the text_string to uppercase letters

before beginning the search. When the FIND command is used in a CLIST, the

Session Manager always stores the text_string in uppercase letters, even if it is

enclosed in quotation marks.

 If you specify a null text_string, the Session Manager uses the last text_string

you entered as the string of characters to search for. A null text_string is defined

as two adjacent quotation marks ('').

TARGET(stream_name | SMOUT)

The name of the stream that is to contain the message produced by the

FIND.LINE command.

window_name

For FIND.BACKWARD and FIND.FORWARD, window_name is the name of the

window whose stream is to be searched.

 For FIND.LINE, window_name is the name of the window whose top line

number is to be found.

FIND command return codes

 Table 67. FIND command return codes

0 Processing successful.

4 Syntax error in command.

8 Text not found.

FIND command examples

Example 1: Assume that the default window is displaying the bottom of the

TSOOUT stream. Find the last time the character string ‘link’ was issued.

find.backward ’link’

Example 2: Assume that the TEST window is displaying the top of the TSOOUT

stream. Find the first time you edited a data set named ‘abc.asm’.

find.forward ’edit abc.asm’ test

Now find the next occurrence of this same text string.

find.forward ’’ test

PUT command

Use the PUT command to place a text string in a Session Manager stream. If you

place the text string in the TSOIN stream, it is sent to TSO/E to be executed as a

FIND command

Chapter 2. Session Manager commands 391

TSO/E command. If you place the text string in the SMIN stream, it is interpreted as

a Session Manager command. The length of the entire PUT command cannot

exceed 512 characters.

PUT command syntax

�� PUT

P
 'text_string' stream_name

1

INTENSITY(

intensity

)

 ��

PUT command operands

text_string

The string of characters to be placed in the stream. If the text_string contains

lowercase letters, blanks, commas, parentheses, it must be enclosed in single

quote marks. A single quote mark in the text_string must be represented as two

adjacent quotation marks.

 If there are no blanks, commas, or parentheses in the text_string, you can omit

the enclosing quotation marks. If you omit the enclosing the enclosing quotation

marks, however, the Session Manager translates the text_string to uppercase

letters before beginning the search. When the PUT command is used in a

CLIST, the Session Manager always stores the text_string in uppercase letters,

even if it is enclosed in quotation marks.

stream_name

The name of the stream where the text_string is to be placed. The Session

Manager places the text_string at the bottom of this stream.

INTENSITY(intensity)

specifies the brightness at which the text_string is to be displayed in the stream.

The valid values are:

0 The text_string is not to be displayed. You can see the line that the

text_string occupies, but the information itself is invisible.

1 The text_string is to be displayed at normal intensity.

2 The text_string is to be highlighted.

PUT command return codes

 Table 68. PUT command return codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

PUT command examples

Example 1: Place a comment in the TSOOUT stream and highlight it.

put ’this is a comment’ tsoout intensity(2)

Example 2: Use the PUT command in the definition_text_string of the

CHANGE.PFK command. When pressed, PF3 is to issue the TSO/E TIME

command and the Session Manager UNLOCK.NEWEST command. The commands

are to be placed in the SMIN stream.

change.pfk 3 ’put time tsoin;put ’unlock newest’

smin’ smin

PUT command

392 z/OS V1R9.0 TSO/E Command Reference

QUERY command

Use the QUERY command to display information about the Session Manager

functions, program function (PF) keys, streams, terminal, and windows.

QUERY command syntax

��

QUERY.

Q

FUNCTION

F

PFKS

P

STREAMS

S

TERMINAL

T

WINDOWS

W

 TSOOUT

stream_name

��

QUERY command operands

FUNCTION

displays the following information for each currently defined session function:

v The name of the function

v The input, output, and copy streams for the function

v Whether the audible alarm is to sound when information enters the input and

output streams

v The intensity at which the information in the output and copy streams is

displayed.

PFKS

displays the following information for each currently defined program function

(PF) key:

v The number of the PF key

v The name of the stream where the text_string is to be placed

v The identifier and delimiter characters for the PF keys

v The text_string used to define the key.

STREAMS

displays the following information for each currently defined stream:

v The name of the stream

v The numbers of the top and bottom lines in the stream

v The maximum size of the stream (in lines and bytes)

v The number of lines and bytes currently used by the stream

v The type of stream (input, output, or extra)

v Whether the audible alarm is to sound when information enters the stream.

TERMINAL

displays the following information about the terminal environment:

v The control setting for the keyboard indicating the maximum time the

keyboard is to remain locked

v Whether the audible alarm is to sound when the keyboard unlocks

v The current number of windows defined on the display screen

v The maximum number of windows that can be defined

v The name of the default window

QUERY command

Chapter 2. Session Manager commands 393

v The permanent location of the cursor

v The following information for each currently defined window:

– The name of the window

– The name of the stream that the window displays

– Whether the window is locked

– Whether you can enter data in the window

– The name of the stream that is to receive the information entered in the

window

– The intensity at which the information in the stream is to be displayed

– Whether the terminal’s audible alarm is to sound when the Session

Manager scrolls the window to display new information in the stream

– How long the window (when unlocked) is to be held in place before it is

scrolled toward the bottom of the stream

– How many lines of the window’s old position are to be repeated when the

window scrolls to the new position

– How much new information must enter the stream before the Session

Manager updates the window.

WINDOWS

displays the following information for each currently defined window:

v The name of the window

v The starting location of the window on the display screen (in rows and

columns)

v The size of the window (in lines and width)

v The name of the stream that the window displays

v The numbers of the top and bottom lines of the stream that the window is

currently displaying

v The numbers of the top and bottom lines of the stream that the window was

displaying when it was last unlocked. (These numbers are used when the

UNLOCK.RESUME command is issued.)

v The numbers of the top and bottom lines of the newest information in the

stream that the window is currently displaying.

stream_name

The name of the stream where the output from the command is to be placed.

The output is in table format.

QUERY command return codes

 Table 69. QUERY command return codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

QUERY Command Examples

Example 1: Display the information for all session functions.

query.function

The output from the command is as follows:

QUERY command

394 z/OS V1R9.0 TSO/E Command Reference

FUNCTION INPUT OUTPUT COPY

 NAME STREAM ALARM STREAM INT ALARM STREAM INT

TSO TSOIN N TSOOUT 1 N TSOOUT 2

SM SMIN N SMOUT 2 Y SMOUT 0

MSG *NONE* TSOOUT 2 Y *NONE*

Example 2: Display the information for all streams defined.

query.streams

The output from the command is as follows:

 STREAM LINE RANGE MAXIMUM SIZE USED

 NAME LOW HIGH LINES BYTES LINES BYTES TYPE ALARM

TSOIN 1 4 305 8192 4 82 INPUT N

TSOOUT 1 47 4005 147456 47 4678 OUTPUT N

EXTRA1 1 1 405 32768 1 38 OUTPUT N

SMOUT 1 61 155 4096 61 424 OUTPUT N

HEADER 1 9 55 1024 9 349 EXTRA N

EXTRA3 1 2 105 1024 2 47 EXTRA N

EXTRA2 1 1 105 1024 1 38 EXTRA N

MESSAGE 1 1 55 1024 1 39 OUTPUT Y

SMIN 1 59 305 8192 59 6192 INPUT N

QUERY COMPLETE

Example 3: Display all information related to the terminal.

query.terminal

The output from the command is as follows:

KEYBOARD CNTL ALARM

 15 N

WINDOWS CURRENT # MAXIMUM # DEFAULT WINDOW CURSOR POSITION

 11 25 MAIN ENTRY 1 1

 NAME VIEW LOCKED PROT TARGET INTENSITY ALARM HOLD OVERLAP UPDATE

LINE HEADER Y Y TSOIN 1 N 0 0 N

STITLE HEADER Y Y TSOIN 1 N 0 0 N

SVALUE EXTRA3 N Y EXTRA3 1 N 0 0 N

LTITLE HEADER Y Y TSOIN 1 N 0 0 N

LVALUE HEADER Y Y TSOIN 1 N 0 0 N

VLINE HEADER Y Y TSOIN 1 N 0 0 N

PASSWD SMOUT N N TSOIN 0 N 0 0 N

CURRENT TSOOUT N N TSOIN 1 N 0 0 N

TENTRY HEADER Y Y TSOIN 1 N 0 0 N

ENTRY HEADER Y N TSOIN 1 N 0 0 N

MAIN TSOOUT N N TSOIN 1 N I 9 L

QUERY COMPLETE

Example 4: Display the information for all windows defined:

query.windows

The output from the command is as follows:

 PRESENT RESUME NEWEST

 VIEWING TOP BOTTOM TOP BOTTOM TOP BOTTOM

 WINDOW ROW COL LINES WIDTH STREAM LINE LINE LINE LINE LINE LINE

LINE 20 1 1 80 HEADER 2 2 1 1 10 10

STITLE 21 63 1 12 HEADER 6 6 1 1 10 10

SVALUE 21 75 1 6 EXTRA3 2 2 1 1 2 2

LTITLE 22 63 1 9 HEADER 9 9 1 1 10 10

LVALUE 22 72 1 9 HEADER 7 7 1 1 10 10

VLINE 24 41 1 2 HEADER 4 4 1 1 10 10

PASSWD 24 43 1 38 SMOUT 57 57 1 1 10 10

CURRENT 21 1 2 62 TSOOUT 36 37 36 37 46 47

QUERY command

Chapter 2. Session Manager commands 395

TENTRY 23 1 1 5 HEADER 3 3 1 1 10 10

ENTRY 23 6 1 114 HEADER 10 10 1 1 10 10

MAIN 1 1 19 80 TSOOUT 1 19 1 19 32 50

QUERY COMPLETE

RESET command

Use the RESET command to restart your Session Manager display environment.

For example, if you accidentally deleted any of the windows on your display screen,

use RESET to get the default display screen back. This command removes the

entries from all of the stacks and re-executes the commands that created the

default environment. The RESET command causes the HEADER stream to be

cleared and then redefined containing only those lines needed in the default

environment. In addition, the default scroll amount is placed in the EXTRA3 stream,

thereby resetting the default scroll amount on your display screen. None of the

other streams are altered.

The RESET command should not be followed by any other Session Manager

command on the same line. A command entered on the same line executes before

the RESET command can reestablish the default screen layout.

RESET command syntax

�� RESET ��

RESET command return codes

 Table 70. RESET command return codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

RESTORE command

Use the RESTORE command to restore the definitions of the program function (PF)

keys, screen layout, or windows previously saved through the SAVE command. If

only one set of definitions exists on the stack, it is not removed. If more than one

set of definitions has been saved, you must issue the RESTORE command as

many times as you issued the SAVE command to get to the definitions you want.

RESTORE command syntax

�� RESTORE.

R
 PFKS

P

SCREEN

S

default_window

WINDOW

W

window_name

 ��

RESTORE command operands

PFKS

specifies that the Session Manager is to restore the program function (PF) key

definitions.

QUERY command

396 z/OS V1R9.0 TSO/E Command Reference

SCREEN

specifies that the Session Manager is to restore the screen layout. The

following items are included in each screen stack element:

v A description of the screen layout

v The location of the cursor

v The value indicating how long the keyboard is to remain locked while a

command is executing (as set using the CHANGE.TERMINAL command)

v The name of the default window

v The name and attributes of each window.

WINDOW

specifies that the Session Manager is to restore the window definitions. Each

window description element contains the following information:

v The audible alarm setting for the window (ALARM)

v The amount of time the window (when unlocked) is held in place before it is

scrolled toward the bottom of the stream (HOLD)

v The number of lines from the window’s old position that are to be repeated

when the window scrolls (OVERLAP)

v Whether you can enter data in the window (PROTECT)

v The name of the stream that is to receive the information typed in the

window and the intensity at which the information is to be displayed

(TARGET)

v How often the window is to scroll over the new information in the stream

(UPDATE)

v The name of the stream the window is displaying (VIEW)

v The numbers of the top and bottom lines in the stream that the window is

currently displaying

v Whether the window is locked or unlocked

The location and size of the window are not restored.

window_name

The name of the window whose description is to be restored.

RESTORE command return codes

 Table 71. RESTORE command return codes

0 Processing successful.

4 Syntax error in command.

8 Stream or window not found.

RESTORE command examples

Example 1: Restore the definition of the TEST window that was previously saved

through the SAVE command.

restore.window test

SAVE command

Use the SAVE command to save the current definitions of program function (PF)

keys, windows, and the screen layout. Later, you can restore these same definitions

by using the RESTORE command.

RESTORE command

Chapter 2. Session Manager commands 397

SAVE command syntax

�� SAVE.

S
 PFKS

P

SCREEN

S

default_window

WINDOW

W

window_name

 ��

SAVE command operands

PFKS

specifies that all current PF key definitions are to be saved as the top element

of the PF key stack.

SCREEN

specifies that the current screen layout is to be saved as the top element on the

screen stack. The following items are saved for each screen stack element:

v A description of the screen layout

v The location of the cursor

v The value indicating how long the keyboard is to remain locked while a

command is executing (as set using the CHANGE.TERMINAL command)

v The name of the default window

v The name and attributes of each window.

WINDOW

requests that the definitions for the default window or the window specified on

the command be saved as the top element of the window stack. Each window

description element contains the following information:

v The audible alarm setting for the window (ALARM)

v The amount of time the window (when unlocked) is held in place before it is

scrolled toward the bottom of the stream (HOLD)

v The number of lines from the window’s old position that are to be repeated

when the window scrolls (OVERLAP)

v Whether you can enter data in the window (PROTECT)

v The name of the stream that is to receive the information typed in the

window and the intensity at which the information is to be displayed

(TARGET)

v How often the window is to scroll over the new information in the stream

(UPDATE)

v The name of the stream the window is displaying (VIEW)

v The numbers of the top and bottom lines in the stream that the window is

currently displaying

v Whether the window is locked or unlocked

The location and size of the window are not saved.

window_name

The name of the window whose description is to be saved.

SAVE command return codes

 Table 72. SAVE command return codes

0 Processing successful.

SAVE Command

398 z/OS V1R9.0 TSO/E Command Reference

Table 72. SAVE command return codes (continued)

4 Syntax error in command.

8 Window not found.

SAVE command examples

Example 1: Save the definition of the TEST window on the window stack.

save.window test

SCROLL command

Use the SCROLL command to move a window over a stream. After the Session

Manager moves the window, the window is locked in position. You can then move

the window by using another scroll command or you can unlock the window by

using the UNLOCK command.

SCROLL command syntax

�� SCROLL.

S
 ABSOLUTE

A

line_number

BACKWARD

B

0

FORWARD

pages

F

lines

LEFT

L

columns

RIGHT

R

NEWEST

N

OLDEST

O

 �

�
 default_window

window_name

Amount

��

Amount

 AMOUNT(HALF)

MAX

PAGE

amount

SCROLL command operands

ABSOLUTE

specifies that the Session Manager is to scroll the window so that the identified

line_number is the top line in the window. Use the QUERY, SMFIND, or

FIND.LINE commands to find specific line numbers.

line_number

The number of the line you want to appear at the top of the window. If you

enter a value for line_number that is 0 or less, the Session Manager sets

line_number to 1. If you enter a value for line_number that is greater than

SAVE Command

Chapter 2. Session Manager commands 399

the highest line number in the stream, the Session Manager sets

line_number to the highest line number in the stream.

BACKWARD

specifies that the Session Manager is to scroll the window backward toward the

top of the stream.

pages

specifies how many pages to scroll the window. (A page is defined as the

number of lines in the window.)

 If the AMOUNT keyword is entered, the default is 0. If the AMOUNT

keyword is not entered, the default is 1.

 If you specify a value that would cause the window to scroll beyond the top

or bottom of the stream, the Session Manager adjusts the value to place

the window at the top or bottom (depending on the direction of the

scrolling).

lines

specifies how many lines to scroll the window.

 If you specify a value that would cause the window to scroll beyond the top

or bottom of the stream, the Session Manager adjusts the value to place

the window at the top or bottom (depending on the direction of the

scrolling).

FORWARD

specifies that the Session Manager is to scroll the window forward toward the

bottom of the stream.

LEFT

specifies that the Session Manager is to scroll the window toward the left side

of the stream. The limit for scrolling left is column 1 of the stream.

columns

specifies the number of columns to scroll the window.

 If the AMOUNT keyword is entered, the default is 0. If the AMOUNT

keyword is not entered, the default is 40.

 If you specify a value that would cause the window to scroll beyond the left

side of the stream, the Session Manager adjusts the value to place the

window at column 1 of the stream. Values that would cause the window to

scroll beyond column 32768 are adjusted to place the window at column

32,768.

RIGHT

specifies that the Session Manager is to scroll the window toward the right side

of the stream. The limit for scrolling right is 32,768 column positions.

NEWEST

specifies that the Session Manager is to scroll the window forward to the bottom

of the stream.

OLDEST

specifies that the Session Manager is to scroll the window backward to the top

of the stream.

window_name

The name of the window to be scrolled.

AMOUNT

The amount the window is to be scrolled. AMOUNT can be specified instead of

SCROLL command

400 z/OS V1R9.0 TSO/E Command Reference

or in addition to, the operands columns, lines, or pages. If you enter a value for

one of the preceding operands and a value for AMOUNT, the Session Manager

sums the two values and scrolls the window the resulting amount. The valid

AMOUNT values are:

HALF

specifies that the window is to be scrolled half a page. (For forward or

backward scrolling, a page is defined as the number of lines in the window.

For right or left scrolling, a page is defined as the number of columns in the

window.)

MAX

specifies that the window is to be scrolled the maximum amount. For

forward scrolling, MAX indicates to scroll to the bottom of the stream

(equivalent to the SCROLL.NEWEST command). For backward scrolling,

MAX indicates to scroll to the top of the stream (equivalent to the

SCROLL.OLDEST command).

PAGE

specifies that the window is to be scrolled a full page.

amount

specifies the number of lines or columns to scroll the window.

SCROLL command return codes

 Table 73. SCROLL command return codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

SCROLL command examples

Example 1: Scroll the default window to the oldest information.

scroll.oldest

or

scroll.backward amount(max)

Example 2: Scroll the TEST window forward one page.

scroll.forward test

or

scroll.forward test amount(page)

Example 3: Scroll the SAMPLE window backward 20 lines.

scroll.backward 0 20 sample

or

scroll.backward sample amount(20)

SNAPSHOT command

Use the SNAPSHOT command to copy a display screen of information into a

stream. You can then use the SMCOPY command to print the stream or copy it into

a data set.

SCROLL command

Chapter 2. Session Manager commands 401

SNAPSHOT command syntax

�� SNAPSHOT

S
 stream_name

FORMAT
 ��

SNAPSHOT command operands

stream_name

The name of the stream where the information is to go.

FORMAT

specifies that carriage control information is to be included in the copy of the

information for printing on a system printer. Highlighted lines on the screen

appear darker in the printed copy.

Note: If the copied information contains the carriage control characters, you

must use the PREFORMAT operand of the SMCOPY command when

printing it.

SHAPSHOT command return codes

 Table 74. SHAPSHOT command return codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

SHAPSHOT command examples

Example 1: Place a copy of the display screen in the EXTRA1 stream.

snapshot extra1 format

Print the stream, using the SMCOPY command.

smcopy fromstream(extra1) preformat

UNLOCK command

Use the UNLOCK command to unlock a window.

UNLOCK command syntax

��

UNLOCK.

U

HERE

H

NEWEST

N

RESUME

R

 default_window

window_name

��

UNLOCK command operands

HERE

causes the Session Manager to unlock the specified window at its current

position.

SNAPSHOT command

402 z/OS V1R9.0 TSO/E Command Reference

NEWEST

causes the Session Manager to display the newest information in the stream,

then unlocks it.

RESUME

causes the Session Manager to display the information the window was viewing

before being locked, then unlocks the window.

window_name

The name of the window to be unlocked.

UNLOCK command return codes

 Table 75. UNLOCK command return codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

UNLOCK command examples

Example 1: Move the default window to the bottom of the stream it is displaying

and unlock it there.

unlock.newest

Example 2: Unlock the SAMPLE window at its current position.

unlock.here sample

UNLOCK command

Chapter 2. Session Manager commands 403

404 z/OS V1R9.0 TSO/E Command Reference

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1988, 2007 405

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

406 z/OS V1R9.0 TSO/E Command Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2007 407

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change

without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Notices

408 z/OS V1R9.0 TSO/E Command Reference

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

v AD/Cycle

v AFP

v C/370

v DFSMSdfp

v DFSMS/MVS

v DFSMShsm

v IBM

v MVS

v MVS/DFP

v MVS/ESA

v Print Services Facility

v RACF

v Resource Link

v SecureWay

v SP

v System/370

v VTAM

v z/OS

v System z

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices

Notices 409

410 z/OS V1R9.0 TSO/E Command Reference

Bibliography

This section lists the books in the TSO/E library and related publications.

TSO/E Publications

TSO/E Publications

v z/OS TSO/E Administration, SA22-7780

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E General Information, SA22-7784

v z/OS TSO/E Guide to SRPI, SA22-7785

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Primer, SA22-7787

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E REXX User’s Guide, SA22-7791

v z/OS TSO/E System Programming Command Reference, SA22-7793

v z/OS TSO/E System Diagnosis: Data Areas, GA22-7792

v z/OS TSO/E User’s Guide, SA22-7794

Related Publications

z/OS MVS Publications

v z/OS MVS Planning: APPC/MVS Management, SA22-7599

v z/OS MVS Programming: Writing Transaction Programs for APPC/MVS,

SA22-7621

v z/OS MVS Initialization and Tuning Reference, SA22-7592

v z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN,

SA22-7609

v z/OS MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

v z/OS MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

v z/OS MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

v z/OS MVS System Messages, Vol 4 (CBD-DMO), SA22-7634

v z/OS MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

v z/OS MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

v z/OS MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

v z/OS MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

v z/OS MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

v z/OS MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

v z/OS MVS System Codes, SA22-7626

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT), GA22-7581

v z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC), GA22-7582

© Copyright IBM Corp. 1988, 2007 411

v z/OS MVS Data Areas, Vol 3 (IVT-RCWK), GA22-7583

v z/OS MVS Data Areas, Vol 4 (RD-SRRA), GA22-7584

v z/OS MVS Data Areas, Vol 5 (SSAG-XTLST), GA22-7585

ISPF Publications

v z/OS ISPF Services Guide, SC34-4819

v z/OS ISPF Dialog Developer’s Guide and Reference, SC34-4821

Bibliography

412 z/OS V1R9.0 TSO/E Command Reference

Index

Special characters
&LASTCC variable 269

&SYSABNCD 356

&SYSABNRC 356

&SYSCMDRC 356

Numerics
1403 printer 225

3203-5 Printer 226

3211 printer 204

3211 Printer 41, 226

3800 Printer
BURST/NOBURST operand

ALLOCATE command 41

OUTDES command 200

PRINTDS command 223

CHARS operand
ALLOCATE command 41

OUTDES command 200

COPIES operand
ALLOCATE command 40

OUTDES command 201

PRINTDS command 225

FCB operand
ALLOCATE command 41

OUTDES command 203

PRINTDS command 226

FLASH operand
ALLOCATE command 41

OUTDES command 203

PRINTDS command 226

image_id operand
ALLOCATE command 42

PRINTDS command 226

MODIFY operand
ALLOCATE command 41

OUTDES command 204

PRINTDS command 228

A
abbreviating keyword operands 12

abbreviations
for commands 373

ABSOLUTE operand
SCROLL command 399

AC operand
LINK command 169

accessibility 405

ACCODE operand
ALLOCATE command 31

ACS (automatic class selection) 18

ACTIVATE operand
ALTLIB command 59

TSOLIB command 358, 361

address operand
AT subcommand of TEST 296

CALL subcommand of TEST 300

RUN subcommand of TEST 336

address_1 operand
COPY subcommand of TEST 302

address_2 operand
COPY subcommand of TEST 302

advanced function printer (AFP) 203

ALARM operand
CHANGE.FUNCTION command 378

CHANGE.STREAM command 381

CHANGE.TERMINAL command 382

CHANGE.WINDOW command 373, 384

ALIAS operand
DELETE command 78

LISTCAT command 179

RENAME command 256

ALIGN operand
ALLOCATE command 42

ALL operand
ALTLIB command 59

EDIT—CHANGE subcommand 90

HELP command 157

LISTCAT command 179

PRINTDS command 227

SMFIND command 270

ALLOCATE command 17

operands
ACCODE 31

ALIGN 42

ALTFILE 30

AVBLOCK 28

AVGREC 28

BFALN 37

BFTEK 38

BLKSIZE 29

BLOCK 27

BUFL 35

BUFNO 35

BUFOFF 38

BURST 41

CATALOG 35

CHARS 41

COPIES 40

CYLINDERS 28

DATACLAS 25

DDNAME 24

DELETE 34

DEN 39, 68

DEST 30

DIAGNS 38

DIR 30

DSNTYPE 43

DSORG 38

DUMMY 23

EROPT 37

EXPDT 36

© Copyright IBM Corp. 1988, 2007 413

ALLOCATE command (continued)
operands (continued)

FCB 41

FILE 24

FILEDATA 48

FLASH 41

FORMS 42

HOLD 30

image_id 41

INPUT 36

KEEP 34

KEYLEN 39

KEYOFF 40

LABEL 31

LIKE 31

LIMCT 38

LRECL 35

MAXVOL 31

MGMTCLAS 26

MOD 24

MODIFY 41

NCP 36

NEW 24

NOBURST 41

NOHOLD 30

OLD 24

OPTCD 37

OSYNC 48

OTRUNC 48

OUTDES 42

OUTPUT 36

PARALLEL 31

PATH 44

PATHDISP 45

PATHMODE 45

PATHOPTS 47

POSITION 31

PRIVATE 31

PROTECT 40

RECFM 38, 67

RECORG 40

REFDD 33

RELEASE 34

RETPD 36

REUSE 30

RLS 49

ROUND 34

SECMODEL 33

SEGMENT 43

SHR 24

SPACE 27

SPIN 42

STORCLAS 26

SYSOUT 24

TRACKS 28

TRTCH 39, 68

UCOUNT 31

UCS 43

UNCATALOG 35

UNIT 30

USING 33

ALLOCATE command (continued)
operands (continued)

VERIFY 42

VOLUME 25

VSEQ 31

WRITER 44

ALLOCATE command under TEST 289

ALLOCATE subcommand of EDIT 88

allocation attributes 26

allocation of SMS data sets 17

ALLOCATION operand
LISTCAT command 180

ALTFILE operand
ALLOCATE command 30

ALTLIB command 55

in concurrent applications 56

in ISPF 56

in most applications 56

in the IPCS dialog 57

search order for libraries 55

stacking application-level requests 57

AMODE operand
CALL subcommand of TEST 301

GO subcommand of TEST 312, 337

LINK command 161

LOADGO command 185

RUN subcommand of TEST 337

AMOUNT operand
SCROLL command 400

AND subcommand of TEST 289

ANY operand
SMFIND command 270

APPC/MVS transaction program, using TEST

command 282

APPLICATION operand
ALTLIB command 59

ASIS operand
CALL command 72

EDIT command 85

SMCOPY command 268

SMFIND command 270

ASM command
EDIT command 83

RUN command 259

assignment of values function of TEST 291

AT subcommand of TEST 296

address 297

COUNT 297

DEFER 298

NOTIFY 298

subcommands 297

TITLE 298

ATTRIB
command 62

command under TEST 300

subcommand of EDIT 88

ATTRIB command
operands

DEN 39, 68

RECFM 38, 67

TRTCH 39, 68

414 z/OS V1R9.0 TSO/E Command Reference

attributes, allocation 26

ATTRLIST operand
FREE command 150

authorized command, running in unauthorized

environment 356

automatic class selection routine 17

AVBLOCK operand
ALLOCATE command 28

AVGREC operand
ALLOCATE command 28

B
background behavior of command

CALL 70

LOGOFF 190

LOGON 193

PROFILE 239

SUBMIT 273

BACKWARD operand
FIND command 390

SCROLL command 400

SMFIND command 270

BASELU operand
TEST command 285

batch processing, canceling jobs 74

BEGIN operand
CONTINUE subcommand of OUTPUT 217

OUTPUT command 213

BFALN operand
ALLOCATE command 37

ATTRIB command 66

BFTEK operand
ALLOCATE command 38

ATTRIB command 67

BIND operand
PRINTDS command 222

BINDER operand
LINK command 161

LOADGO command 185

BLKSIZE operand
ALLOCATE command 29

ATTRIB command 64

RECEIVE command 249

BLOCK operand
ALLOCATE command 27

EDIT command 84

RECEIVE command 249

BMARGIN operand
PRINTDS command 223

BOTTOM subcommand of EDIT 88

BREAK operand
TERMINAL command 279

BUFL (buffer_length) operand
ALLOCATE command 35

ATTRIB command 64

BUFNO (number_of_buffers) operand
ALLOCATE command 35

ATTRIB command 64

BUFOFF (block_prefix_length) operand
ALLOCATE command 38

BUFOFF (block_prefix_length) operand (continued)
ATTRIB command 68

BURST operand
ALLOCATE command 41

OUTDES command 200

PRINTDS command 223

C
CALL command 70

CALL operand
LINK command 161

LOADGO command 188

CALL subcommand of TEST 300

CANCEL command 74

CANCEL command under TEST 302

CAPS operand
CALL command 72

EDIT command 85

SMCOPY command 268

CASE operand
LINK command 162

LOADGO command 186

CATALOG operand
ALLOCATE command 35

DELETE command 77

LISTCAT command 177

LISTDS command 182

CCHAR operand
PRINTDS command 223

CHANGE subcommand of EDIT 89

CHANGE.CURSOR command 375

CHANGE.FUNCTION command 376

CHANGE.MODE command 379

CHANGE.PFK command 379

CHANGE.STREAM command 381

CHANGE.TERMINAL command 382

CHANGE.WINDOW command 383

CHAR operand
PROFILE command 236

TERMINAL command 281

character arrangement table 200

CHARS operand
ALLOCATE command 41

OUTDES command 200

PRINTDS command 224

CHECK operand
RUN command 259

RUN subcommand of EDIT 118

CKPOINT subcommand of EDIT 93

CKPTLINE operand
OUTDES command 200

CKPTPAGE operand
OUTDES command 200

CKPTSEC operand
OUTDES command 201

CLASS operand
OUTDES command 201

OUTPUT command 213

PRINTDS command 225

classes, SMS 18

Index 415

CLEAR key, use of 371

CLEAR operand
CHANGE.STREAM command 382

TERMINAL command 280

CLIST operand
EDIT command 83

executing with EXEC command 130

CLUSTER operand
DELETE command 78

LISTCAT command 178

CN operand
SEND command 263

CNTL operand
EDIT command 83

COBLIB operand
LINK command 164

LOADGO command 188

COBOL operand
EDIT command 83

RUN command 259

Code and Go FORTRAN
EDIT command 83

column operand
CHANGE.CURSOR command 375

DEFINE.WINDOW command 386

COLUMNS operand
PRINTDS command 225

SCROLL command 400

command modifier, definition 372

command name, definition 372

comments 12

COMPACT operand
OUTDES command 201

compaction table 201

compiler type, determining 261

COND operand
ALTLIB command 60

TSOLIB command 360, 361

constructs of data sets 19

CONTINUE subcommand of OUTPUT 217

CONTROL operand
abbreviation 373

CHANGE.TERMINAL command 382

OUTDES command 201

control section tags 351

control_password operand
PROTECT command 242

COPIES operand
ALLOCATE command 40

OUTDES command 201

PRINTDS command 225

copy modification module 204, 228

COPY operand
CHANGE.FUNCTION command 377

RECEIVE command 250

COPY subcommand of
EDIT command 94

TEST command 302

COPYLIST operand
TRANSMIT command 344

count operand
CHANGE subcommand of EDIT 89

COPY subcommand of EDIT 95

DELETE subcommand of EDIT 100

DOWN subcommand of EDIT 102

LIST subcommand of EDIT 109

MOVE subcommand of EDIT 111

SCAN subcommand of EDIT 121

UP subcommand of EDIT 128

CP operand
TEST command 284

CREATION operand
LISTCAT command 179

cursor
changing the location of 375

permanent location 375

temporary location 375

CYLINDER operand
ALLOCATE command 28

RECEIVE command 249

D
data check errors 202

data class for data set 25

data class, definition of 18

data encryption (TRANSMIT and RECEIVE) 348

Data Facility Hierarchical Storage Manager

(DFHSM) 18

DATA operand
LISTCAT command 178

PROTECT command 243

data set
formatting 219

printing 219

profile, RACF 33

RACF protected 40

with Storage Management Subsystem 17

data_set_name operand
ALLOCATE command 22

LINK command 160

LISTDS command 181

LOADGO command 184

PRINTDS command 222

PROTECT command 242

SAVE subcommand of EDIT 119

DATACK operand
OUTDES command 202

DATACLAS operand
ALLOCATE command 25

DATASET operand
ALLOCATE command 22

ALTLIB command 60

FREE command 150

PRINTDS command 222

RECEIVE command 248

TRANSMIT command 343

TSOLIB command 361

VLFNOTE command 368

DC operand
LINK command 168

416 z/OS V1R9.0 TSO/E Command Reference

DCBS operand
LINK command 168

DCF (see Document Composition Facility) 220

DCF operand
PRINTDS command 225

DDNAME operand
ALLOCATE command 24

ALTLIB command 60

FREE command 150

PRINTDS command 222

TRANSMIT command 343

TSOLIB command 361

DEACTIVATE operand
ALTLIB command 59

TSOLIB command 358, 361

DEFAULT operand
CHANGE.TERMINAL command 383

OUTDES command 202

default window 373, 382

DEFINE.WINDOW command 386

defining allocation attributes 26

defining output descriptors 197

definition_text_string operand
CHANGE.PFK command 380

DELETE command 75

DELETE operand
ALLOCATE command 34

FREE command 151

OUTPUT command 214

PROTECT command 243

RECEIVE command 250

DELETE subcommand of
EDIT command 100

TEST command 305

DELETE.WINDOW command 389

delimiter 13

delimiter operand
CHANGE.PFK command 380

DEN operand
ALLOCATE command 39, 68

ATTRIB command 39, 68

DEST operand
ALLOCATE command 30

FREE command 150

OUTDES command 202

OUTPUT command 214

PRINTDS command 226

determining compiler type 261

device number
four-digit device support 30

DFHSM (see Data Facility Hierarchical Storage

Manager) 18

diagnostic information 196

DIAGNS (TRACE) operand
ALLOCATE command 38

ATTRIB command 68

DIR operand
ALLOCATE command 30

directory operand
PRINTDS command 227

RECEIVE command 249

disability 405

DISCONNECT operand
LOGOFF command 191

discrete data set profile 33

DISPLAY operand
ALTLIB command 59

RECEIVE command 247

TSOLIB command 358, 362

displaying
allocated data sets 171

contents of broadcast data set 174

Document Composition Facility (DCF) 220

DOUBLE operand
PRINTDS command 223

DOWN subcommand of EDIT 102

DPAGELBL operand
OUTDES command 203

DROP subcommand of TEST 305

DSNAME operand
ALLOCATE command 22

ALTLIB command 60

CALL command 71

EDIT command 81

FREE command 150

PRINTDS command 222

RECEIVE command 248

TRANSMIT command 343

TSOLIB command 361

VLFNOTE command 368

DSNTYPE operand
ALLOCATE command 43

DSORG operand
ALLOCATE command 38

ATTRIB command 68

DUMMY operand
ALLOCATE command 23

E
EDIT command

subcommands
ALLOCATE 88

ATTRIB 88

BOTTOM 88

CHANGE 89

CKPOINT 93

COPY 94

DELETE 100

DOWN 102

END 102

FIND 103

FREE 104

HELP 104

INPUT 104

INSERT 106

insert/replace/delete function 107

LIST 109

MOVE 110

PROFILE 115

RENUM 115

RUN 117

Index 417

EDIT command (continued)
subcommands (continued)

SAVE 119

SCAN 121

SEND 123

SUBMIT 123

TABSET 126

TOP 128

UNNUM 128

UP 128

VERIFY 129

EMODE operand
EDIT command 81

ENCIPHER operand
TRANSMIT command 344

encryption, data (TRANSMIT and RECEIVE) 348

END command 130, 389

END operand
RECEIVE command 250

WHEN command 370

END subcommand of
EDIT command 102

OUTPUT command 218

TEST command 306

end_line_number operand
SAVE subcommand of EDIT 121

ENTRIES operand
LISTCAT command 178

EP operand
LOADGO command 189

EPILOG operand
TRANSMIT command 345

EQUATE operand
address 307

data_type 307

LENGTH 308

MULTIPLE 308

symbol 307

EQUATE subcommand of TEST 307

ERASE operand
DELETE command 77

EROPT operand
ALLOCATE command 37

ATTRIB command 67

EXEC command 130

EXEC as a subcommand 130

EXEC command under TEST 309

EXEC subcommand of EDIT 103

EXECUTIL command 142

executing CLIST, EXEC command 130

EXPDT (year_day) operand
ALLOCATE command 36

ATTRIB command 65

EXPIRATION operand
LISTCAT command 179

explicit form of EXEC command 130

extended implicit form of EXEC 130

external writer name 44, 207, 231

F
FCB operand

ALLOCATE command 41

OUTDES command 203

PRINTDS command 226

FETCHOPT operand
LINK command 163

FIB commands
See foreground-initiated-background (FIB)

commands

FILE operand
ALLOCATE command 24

ALTLIB command 60

DELETE command 77

FREE command 150

PRINTDS command 222

TRANSMIT command 343

TSOLIB command 361

FILEDATA operand
ALLOCATE command 48

FIND command 390

FIND subcommand of EDIT 103

FIRST operand
SMFIND command 270

FLASH operand
ALLOCATE command 41

OUTDES command 203

PRINTDS command 226

flash overlay 41, 203, 226

FOLD operand
PRINTDS command 226

foreground-initiated-background (FIB) commands
CANCEL 74

OUTPUT 211

STATUS 272

SUBMIT 274

format of commands 372

FORMAT operand
abbreviation 373

SMCOPY command 268

SNAPSHOT command 402

FORMDEF operand
OUTDES command 203

forms control buffer (FCB) 41, 203

FORMS operand
ALLOCATE command 42

OUTDES command 203

PRINTDS command 226

FORT operand
RUN command 259

FORTG operand
EDIT command 83

FORTGE operand
EDIT command 83

FORTGI operand
EDIT command 83

FORTH operand
EDIT command 83

FORTLIB operand
LINK command 164

LOADGO command 187

418 z/OS V1R9.0 TSO/E Command Reference

FORTRAN
(H) compiler 121

Code and Go 83

IV (E) 83

IV (G) 83

IV (G1) 83

IV (H) EXTCOMP statements 83

FORWARD operand
FIND command 390

SCROLL command 400

SMFIND command 270

four-digit device support
See device number

FREE command 149

operands
PATH 152

PATHDISP 152

FREE subcommand of EDIT 104

freeing list of output descriptor names 151

FREEMAIN subcommand of TEST 309

FROMDATASET operand
SMCOPY command 267

FROMSTREAM operand
SMCOPY command 267

FULLSCREEN
logon 192

operand of TRANSMIT command 345

FUNCTION operand
HELP command 156

QUERY command 393

G
GENERATIONDATAGROUP operand

DELETE command 78

LISTCAT command 179

generic data set profile 33

GETMAIN subcommand of TEST 310

GETMAIN, operands of TEST
EQUATE 311

integer 311

LOC(ANY) 311

LOC(BELOW) 311

LOC(RES) 311

SP 311

GO operand
RUN command 260

GO subcommand of TEST 311

GOFORT operand
EDIT command 83

RUN command 259

GROUP operand
LOGON command 195

GROUPID operand
OUTDES command 203

H
HALF operand

SCROLL command 401

halt processing of batch jobs 74

HELP command 154

HELP command under TEST 313

help information 154

HELP subcommand of
EDIT command 104

OUTPUT command 218

help text, specifying languages for 238

HELP, using 14

HERE operand
CONTINUE subcommand of OUTPUT 218

OUTPUT command 213

UNLOCK command 402

HISTORY operand
LISTALC command 171

LISTCAT command 179

LISTDS command 181

HOLD operand
ALLOCATE command 30

CHANGE.WINDOW command 373, 384

DEFINE.WINDOW command 387

FREE command 151

LOGOFF command 191

OUTPUT command 214

PRINTDS command 227

host computer 196

I
I operand, INPUT subcommand of EDIT 104

IBM host computer 196

IBM Personal Computer 196

identifier operand
CHANGE.PFK command 380

image_id of ALLOCATE command 41

IMODE operand
EDIT command 81

implicit form of EXEC command 130

INCR operand
COPY subcommand of EDIT 94

MOVE subcommand of EDIT 110

increment operand
INPUT subcommand of EDIT 104

RENUM subcommand of EDIT 115

INDATASET operand
RECEIVE command 246

INDDNAME operand
RECEIVE command 246

INDEX operand
LISTCAT command 178

OUTDES command 204

INDSNAME operand
RECEIVE command 246

INFILE operand
RECEIVE command 246

INPUT operand
ALLOCATE command 36

ATTRIB command 65

CHANGE.FUNCTION command 377, 378

CHANGE.WINDOW command 384

DEFINE.WINDOW command 387

INPUT subcommand of EDIT 104

Index 419

INSERT subcommand of EDIT 106

insert/replace/delete function of EDIT 107

intensity operand
CHANGE.FUNCTION command 378

INTENSITY operand
PUT command 392

SMPUT command 271

INTERCOM operand
PROFILE command 237

IOTRACE operand
MVSSERV command 196

J
JES printers 219

JESPLEX xi, 261

K
KEEP operand

ALLOCATE command 34

FREE command 151

OUTPUT command 214

KEEPTP operand
TEST command 285

keyboard 405

KEYLEN operand
ALLOCATE command 39

ATTRIB command 68

KEYOFF operand
ALLOCATE command 40

keyword operand 9, 12, 372

L
LABEL operand

ALLOCATE command 31

LISTDS command 182

language
PLANGUAGE operand

PROFILE command 238

primary
PROFILE command 238

secondary
PROFILE command 238

SLANGUAGE operand
PROFILE command 238

LEFT operand
SCROLL command 400

LENGTH operand
COPY subcommand of TEST 303

LET operand
LINK command 165

LOADGO command 188

LEVEL operand
LISTCAT command 178

LISTDS command 182

LIB operand
LINK command 164

LOADGO command 185

RUN command 259

LIB operand (continued)
RUN subcommand of EDIT 118

LIBRARY operand
ALTLIB command 60

TSOLIB command 361

LIKE operand
ALLOCATE command 31

LIMCT (search_number) operand
ALLOCATE command 38

ATTRIB command 68

LINDEX operand
OUTDES command 204

line continuation 13

line mode logon 191

line numbers, location 228

LINE operand
CHANGE.WINDOW command 385

DEFINE.WINDOW command 388

FIND command 391

SMCOPY command 268

SMFIND command 270

TRANSMIT command 345

line_1 operand
COPY subcommand of EDIT 95

MOVE subcommand of EDIT 110

line_2 operand
COPY subcommand of EDIT 95

MOVE subcommand of EDIT 110

line_3 operand
COPY subcommand of EDIT 95

MOVE subcommand of EDIT 110

line_4 operand
COPY subcommand of EDIT 96

MOVE subcommand of EDIT 111

line_number operand
INPUT subcommand of EDIT 104

SCROLL command 399

line_number_1 operand
CHANGE subcommand of EDIT 89

DELETE subcommand of EDIT 100

LIST subcommand of EDIT 109

SCAN subcommand of EDIT 121

line_number_2 operand
CHANGE subcommand of EDIT 89

DELETE subcommand of EDIT 100

LIST subcommand of EDIT 109

SCAN subcommand of EDIT 121

LINECT operand
LINK command 165

LOADGO command 187

OUTDES command 204

lines operand
DEFINE.WINDOW command 386

SCROLL command 400

LINES operand
PRINTDS command 227

LINK command 158

operands
BINDER 161

CALL 161

NCAL 162

420 z/OS V1R9.0 TSO/E Command Reference

LINK command (continued)
operands (continued)

NOBINDER 161

NONCAL 162

LINK command under TEST 313

LIST operand
EXEC command 133

LINK command 165

LOADGO command 187

LIST subcommand of
EDIT 109

TEST 313

LIST, operands of TEST
address 313

ALET 315

AR 315

data_type 314

LENGTH 315

MULTIPLE 316

PRINT 316

LISTALC command 171

LISTALC command under TEST 319

LISTBC command 174

LISTBC command under TEST 319

LISTCAT command 176

LISTCAT command under TEST 319

LISTDCB subcommand of TEST 319

LISTDS command 180

LISTDS command under TEST 322

LISTMAP subcommand of TEST 323

LISTPSW operands of TEST
ADDR 324

PRINT 324

LISTPSW subcommand of TEST 324

LISTVP subcommand of TEST 327

LISTVSR subcommand of TEST 327

LMARGIN of PRINTDS 222

LMSG operand on RUN subcommand of EDIT 117

LOAD subcommand of TEST 328

LOADGO command
description 182

operands
CALL 188

COBLIB 188

data-set-list 184

FORTLIB 187

LIB 185

MAP 188

NAME 189

NOCALL 188

NOMAP 188

NOPRINT 185

NORES 188

NOTERM 188

PLIBASE 187

PLICMIX 187

PLILIB 187

PRINT 184

RES 188

TERM 188

LOG operand
TRANSMIT command 345

LOG(ALL) operand
TRANSMIT command 345

LOGDATASET operand
RECEIVE command 246

TRANSMIT command 345

LOGDSNAME operand
RECEIVE command 246

TRANSMIT command 345

logging function of TRANSMIT and RECEIVE 349

LOGNAME operand
TRANSMIT command 346

LOGOFF command 190

LOGON command 191

LOGON, full-screen 192

LookAt message retrieval tool xii

LPREC operand
RUN command 260

LRECL (logical_record_length) operand
ALLOCATE command 35

ATTRIB command 65

EDIT command 84

LU operand
TEST command 285

M
MAIL operand

LISTBC command 175

LOGON command 194

management class of data set 26

management class, definition of 18

managing data sets 17

MAP operand
LINK command 164

MAX operand
SCROLL command 401

MAXVOL operand
ALLOCATE command 31

media destination 208

members of PDS, printing 219

MEMBERS operand
LISTALC command 172

LISTDS command 182

PRINTDS command 227

TRANSMIT command 346

message (MSG) function, change the streams for 377

MESSAGE operand
TRANSMIT command 344

message retrieval tool, LookAt xii

MGMTCLAS operand
ALLOCATE command 26

RECEIVE command 250

MOD operand
ALLOCATE command 24

RECEIVE command 249

MODE operand
PROFILE command 237

model data set profile 33

Index 421

MODIFY operand
ALLOCATE command 41

OUTDES command 204

PRINTDS command 228

module call 196

MOVE subcommand of EDIT 110

MSG operand
CHANGE.FUNCTION command 377

MSGDATASET operand
TRANSMIT command 344

MSGDDNAME operand
TRANSMIT command 343

MSGDSNAME operand
TRANSMIT command 344

MSGFILE operand
TRANSMIT command 343

MSGID (list) operand
HELP command 157

PROFILE command 237

MSGLEVEL operand
LINK command 166

LOADGO command 188

multiple output bin 208

MVSSERV command 196

diagnostic information 196

error messages 196

IBM Personal Computer 196

informational messages 196

IOTRACE operand 196

module calls 196

NOTRACE operand 196

syntax 196

terminal messages 196

trace data set 196

TRACE operand 196

TSO/E Enhanced Connectivity Facility 196

N
name operand

LISTCAT command 179

NAMES data set
control section tags 351

function 350

nicknames section tags 352

NAMES operand
RECEIVE command 247

NCAL operand
LINK command 162

NCP operand
ALLOCATE command 36

ATTRIB command 65

NE operand
LINK command 168

NEW operand
ALLOCATE command 24

EDIT command 81

OUTDES command 200

RECEIVE command 249

new_line_number operand
RENUM subcommand of EDIT 115

new_line_number operand (continued)
SAVE subcommand of EDIT 119

new_name operand
RENAME command 256

NEWCLASS operand
OUTPUT command 214

NEWEST operand
CHANGE.WINDOW operand 385

DEFINE.WINDOW command 388

SCROLL command 400

UNLOCK command 403

NEXT operand on CONTINUE subcommand of

OUTPUT 218

nicknames section tags 352

NO operand
CHANGE.FUNCTION command 378

NOBINDER operand
LINK command 161

LOADGO command 186

NOBURST operand
OUTDES command 200

PRINTDS command 223

NOCOPY operand
CHANGE.FUNCTION command 378

NOCP operand
TEST command 284

NODC operand
LINK command 168

NODCF operand
PRINTDS command 225

NODEFAULT operand
OUTDES command 202

NODISPLAY operand
RECEIVE command 247

NODPAGELBL operand
OUTDES command 203

NOENVB operand
CALL command 72

NOEPILOG operand
TRANSMIT command 345

NOERASE operand
DELETE command 78

NOFORMAT operand
SMCOPY command 268

NOGO operand
RUN command 260

RUN subcommand of EDIT 117

NOHOLD operand
ALLOCATE command 30

FREE command 151

OUTPUT command 214

PRINTDS command 227

NOINTERCOM operand
PROFILE command 237

NOKEEP operand
OUTPUT command 214

NOLET operand
LINK command 165

NOLINE operand
PROFILE command 237

422 z/OS V1R9.0 TSO/E Command Reference

NOLINES operand
TERMINAL command 278

NOLIST operand
EXEC command 133

NOLOG operand
TRANSMIT command 345

NOMAIL operand
LISTBC command 175

NOMAP operand
LINK command 164

LOADGO command 188

NOMODE operand
PROFILE command 237

NOMSGID operand
PROFILE command 237

non-VSAM data sets
TSO/E commands and subcommands 14

NONAMES operand
RECEIVE command 247

NONCAL operand
LINK command 162

NONE operand
LINK command 168

NONOTICES operand
LISTBC command 175

LOGON command 194

NONOTIFY operand
SUBMIT command 277

SUBMIT subcommand of EDIT 125

TRANSMIT command 346

NONUM operand
EDIT command 84

PRINTDS command 228

NONVSAM or NVSAM operand
DELETE command 78

LISTCAT command 179

NOOL operand
LINK command 168

NOOVLY operand
LINK command 167

NOPAUSE operand
CONTINUE subcommand of OUTPUT 218

OUTPUT command 213

PROFILE command 237

RUN command 260

RUN subcommand of EDIT 117

NOPOINTER operand
COPY subcommand of TEST 303

NOPOINTER operand on COPY subcommand of

TEST 303

NOPREFIX operand
PROFILE command 238

NOPREVIEW operand
RECEIVE command 249

NOPRINT operand
LOADGO command 185

NOPROLOG operand
TRANSMIT command 346

NOPROMPT operand
INPUT subcommand of EDIT 104

PROFILE command 237

NOPURGE operand
CANCEL command 75

DELETE command 77

NOPWREAD operand
PROTECT command 243

NORECOVER operand
EDIT command 81

PROFILE command 236

NOREFR operand
LINK command 167

NORENT operand
LINK command 167

NORES operand
LOADGO command 188

NOREUS operand
LINK command 165

NOSAVE operand, END subcommand of EDIT 102

NOSCAN operand
EDIT command 84

NOSCRATCH operand
DELETE command 78

NOSCTR operand
LINK command 167

NOSECONDS operand
TERMINAL command 279

NOSTORE operand
RUN command 260

NOSYSAREA operand
OUTDES command 206

NOTERM operand
LINK command 168

LOADGO command 188

NOTEST operand
LINK command 168

RUN command 260

Notices 407

NOTICES operand
LISTBC command 175

LOGON command 194

NOTIFY operand
SUBMIT command 276

SUBMIT subcommand of EDIT 125

TRANSMIT command 346

NOTIMEOUT operand
TERMINAL command 279

NOTITLE operand
PRINTDS command 229

NOTRAN operand
TERMINAL command 281

NOTRANS operand
SMCOPY command 268

NOTRC operand
OUTDES command 207

PRINTDS command 230

NOUSER operand
EDIT—SUBMIT subcommand 124

SUBMIT command 276

NOWAIT operand
SEND command 264

NOWARN operand
TRANSMIT command 347

Index 423

NOWRITE operand
PROTECT command 243

NOWTPMSG operand
PROFILE command 238

NOXCAL operand
LINK command 165

NOXREF operand
LINK command 165

NUM operand
EDIT command 84

PRINTDS command 228

O
OBJECT operand

RUN command 260

OFF operand
address 330

SCAN subcommand of EDIT 121

TABSET subcommand of EDIT 127

VERIFY subcommand of EDIT 129

OFF subcommand of TEST 329

OIDCARD operand
LOGON command 195

OL operand
LINK command 168

OLD operand
ALLOCATE command 24

EDIT command 82

RECEIVE command 249

old_line_number operand
SAVE subcommand of EDIT 121

old_name operand
RENAME command 256

OLDEST operand
SCROLL command 400

ON operand
SCAN subcommand of EDIT 121

TABSET subcommand of EDIT 126

VERIFY subcommand of EDIT 129

operand, description of
Session Manager 372

TSO/E 9

OPERANDS operand
HELP command 156

operator operand
WHEN command 369

OPT operand
RUN command 260

OPTCD operand
ALLOCATE command 37

ATTRIB command 66

OR subcommand of TEST, operands
address_1 331

address_2 331

LENGTH 332

POINTER 332

OSYNC operand
ALLOCATE command 48

OUTBIN operand
OUTDES command 208

OUTDATASET operand
TRANSMIT command 347

OUTDDNAME operand
TRANSMIT command 347

OUTDES command
operands 197

ADDRESS 200

BUILDING 200

BURST 200

CHARS 200

CKPTLINE 200

CKPTPAGE 200

CKPTSEC 201

CLASS 201

COMPACT 201

CONTROL 201

COPIES 201

DATACK 202

DEFAULT 202

DEPT 202

DEST 202

DPAGELBL 203

FCB 203

FLASH 203

FORMDEF 203

FORMS 203

GROUPID 203

INDEX 204

LINDEX 204

LINECT 204

MODIFY 204

NAME 204

NEW 200

NOBURST 200

NODEFAULT 202

NODPAGELBL 203

NOSYSAREA 206

NOTIFY 204

NOTRC 207

OUTBIN 208

OUTDISP 205

output descriptor name 199

PAGEDEF 205

PIMSG 205

PRMODE 206

PRTY 206

REUSE 200

ROOM 206

SYSAREA 206

TITLE 206

TRC 207

UCS 207

USERDATA 207

USERLIB 207

WRITER 207

PRINTDS command 229

OUTDES operand
ALLOCATE command 42

FREE command 151

OUTDSNAME operand
TRANSMIT command 347

424 z/OS V1R9.0 TSO/E Command Reference

OUTFILE operand
TRANSMIT command 347

output characteristics 220

output class 201

OUTPUT command 211

output descriptor name operand
OUTDES command 199

PRINTDS command 229

OUTPUT operand
ALLOCATE command 36

ATTRIB command 65

CHANGE.FUNCTION command 377, 378

output sequence 214

OUTPUT subcommands 217

OVERLAP operand
CHANGE.WINDOW command 373, 384

DEFINE.WINDOW command 387

OVLY operand
LINK command 167

P
page labeling 203

PAGE operand
CHANGE.WINDOW command 385

DEFINE.WINDOW command 388

SCROLL command 401

PAGEDEF operand
OUTDES command 205

PAGELEN operand
PRINTDS command 229

pages operand
SCROLL command 400

PAGESPACE operand
DELETE command 78

LISTCAT command 179

PARALLEL operand
ALLOCATE command 31

parameters operand
TEST command 284

PARM operand
RECEIVE command 246

TRANSMIT command 346

partitioned data set, printing 219

PASSENVB operand
CALL command 72

password
data set 244

DELETE command 77

EDIT command 81

operand of PROTECT command 243

password reprompt 193

PATH operand
ALLOCATE command 44

FREE command 152

PATHDISP operand
ALLOCATE command 45

FREE command 152

PATHMODE operand
ALLOCATE command 45

PATHOPTS operand
ALLOCATE command 47

PAUSE operand
CONTINUE subcommand of OUTPUT 218

OUTPUT command 213

PROFILE command 237

RUN command 260

RUN subcommand of EDIT 117

PDS operand
TRANSMIT command 346

personal computer 196

pfk_number operand
CHANGE.PFK command 372, 380

PFKS operand
QUERY command 393

RESTORE command 396

SAVE operand 398

PIMSG operand
OUTDES command 205

PLANGUAGE operand
PROFILE command 238

example 241

PLI operand
EDIT command 82

RUN command 259

PLIBASE operand
LINK command 164

LOADGO command 187

PLICMIX operand
LINK command 164

LOADGO command 187

PLIF operand
EDIT command 82

PLILIB operand
LOADGO command 187

POINTER operand
COPY subcommand of TEST 303

POINTER operand on COPY subcommand of

TEST 303

POSITION operand
ALLOCATE command 31

position operand, FIND subcommand of EDIT 104

positional operand 372

POSITIONAL operand
HELP command 156

positional operands 9

PREFIX operand
PROFILE command 238

PREFORMAT operand
SMCOPY command 268

PREVIEW operand
RECEIVE command 249

PRINT operand
LINK command 161

OUTPUT command 213

SMCOPY command 267

print services facility (PSF) 202

PRINTDS command 219

operands 219

ALL 227

BIND 222

Index 425

PRINTDS command (continued)
operands (continued)

BMARGIN 223

BURST 223

CCHAR 223

CHARS 224

CLASS 225

COLUMNS 225

COPIES 225

DCF 225

DDNAME 222

DEST 226

DIRECTORY 227

DOUBLE 223

FCB 226

FILE 222

FLASH 226

FOLD or TRUNCATE 226

FORMS 226

HOLD 227

LINES 227

LMARGIN 222

MEMBERS 227

MODIFY 228

NOBURST 223

NODCF 225

NOHOLD 227

NONUM 228

NUM 228

OUTDES 229

PAGELEN 229

SINGLE 223

SNUM 228

TITLE or NOTITLE 229

TMARGIN 230

TODATASET or TODSNAME 230

TRC or NOTRC 230

TRIPLE 223

UCS 231

WRITER 231

printer support for SYSOUT data sets 42

printing on JES printers 219

priority, processing 206

PRIVATE operand
ALLOCATE command 31

PRMODE operand
OUTDES command 206

process mode 206

processing priority 206

PROFILE command 234

PROFILE command under TEST 333

PROFILE subcommand of EDIT 115

program function (PF) keys
defining 379

information displayed 393

uses 371

PROLOG operand
TRANSMIT command 346

PROMPT operand
INPUT subcommand of EDIT 104

PROFILE command 237

PROTECT command 241

dynamic UCB 242

PROTECT operand
ALLOCATE command 40

CHANGE.WINDOW command 373, 384

DEFINE.WINDOW command 387

PRTY operand
OUTDES command 206

PURGE operand
CANCEL command 75

DELETE command 77

purging jobs 75

PUT command 391

PWREAD operand
PROTECT command 243

PWWRITE operand
PROTECT command 243

Q
QUALIFY subcommand of TEST, operands

address 334

module_name.entry_name 334

TCB 334

QUERY command 393

QUIET operand
ALTLIB command 60

TSOLIB command 362

quoted string notation 90, 103

R
R operand, INPUT subcommand of EDIT 104

RACF data set profile 33

RACF job with user ID 239

RACF protected data set 40

CHARS operand
ALLOCATE command 41

reason codes, EXEC command 139

RECEIVE command
data encryption function 348

description 245

logging function 349

RECFM operand
ALLOCATE command 38, 67

ATTRIB command 38, 67

RECONNECT operand
LOGON command 194

record format 38, 67, 222

RECORG operand
ALLOCATE command 40

RECOVER operand
EDIT command 81

PROFILE command 235

recovering, EDIT command 81

REFDD operand
ALLOCATE command 33

REFR operand
LINK command 167

RELEASE operand
ALLOCATE command 34

426 z/OS V1R9.0 TSO/E Command Reference

RELEASE operand (continued)
RECEIVE command 249

RENAME command 256

RENAME command under TEST 336

RENT operand
LINK command 167

RENUM operand
SAVE subcommand of EDIT 120

RENUM subcommand of EDIT 115

REPLACE operand
PROTECT command 242

requester 196

RES operand
LOADGO command 188

RESET command 396

RESET operand
ALTLIB command 59

TSOLIB command 358, 362

RESTORE command 396

RESTORE operand
RECEIVE command 250

RESUME operand
UNLOCK command 403

RETPD (number_of_days) operand
ALLOCATE command 36

ATTRIB command 66

return codes
ALLOCATE 49

ATTRIB command 69

CALL command 72

CANCEL command 75

CHANGE.CURSOR command 376

CHANGE.FUNCTION command 378

CHANGE.MODE command 379

CHANGE.PFK command 381

CHANGE.STREAM command 382

CHANGE.TERMINAL command 383

CHANGE.WINDOW command 385

DEFINE.WINDOW command 388

DELETE command 78

DELETE.WINDOW command 389

EDIT command 86

EXEC command 139

FIND command 391

FREE command 152

HELP command 157

LINK command 170

LISTALC command 172

LISTBC command 175

MVSSERV command 197

OUTDES 209

OUTPUT command 216

PRINTDS command 233

PROFILE command 240

PROTECT command 244

PUT command 392

QUERY command 394

RECEIVE command 251

RENAME command 257

RESET command 396

RESTORE command 397

return codes (continued)
RUN command 261

SAVE command 398

SCROLL command 401

SEND command 265

SMCOPY command 269

SMFIND command 271

SMPUT command 272

SNAPSHOT command 402

STATUS command 273

SUBMIT command 277

TERMINAL command 281

TEST command 285

TIME command 342

TRANSMIT command 347

TSOEXEC command 357

TSOLIB command 363

UNLOCK command 403

VLFNOTE command 369

WHEN command 370

REUS operand
LINK command 165

REUSE operand
ALLOCATE command 30

OUTDES command 200

RIGHT operand
SCROLL command 400

RLS operand
ALLOCATE command 49

RMODE operand
LINK command 163

ROUND operand
ALLOCATE command 34

row operand
CHANGE.CURSOR command 375

DEFINE.WINDOW command 386

RUN command 257

RUN subcommand of
EDIT command 117

TEST command 336

S
SAVE command 397

SAVE subcommand of
EDIT command 119

OUTPUT command 219

SCAN operand
EDIT command 84

SCAN subcommand of EDIT 121

SCRATCH operand
DELETE command 78

screen layout, Session Manager
information restored 397

information saved 398

SCREEN operand
RESTORE command 397

SAVE command 398

SCROLL command 399

SCRSIZE operand
TERMINAL command 280

Index 427

SCTR operand
LINK command 167

SECLABEL operand
See also security label

LOGON command 195

SECMODEL operand
ALLOCATE command 33

SECONDS operand
TERMINAL command 279

security label
canceling jobs 74

for submitting jobs 273

LISTBC command
message processing 174

on job statement 273

on LOGON command 195

on output pages 203, 206

processing job output 212

RECEIVE command
message processing 253

SEND command
message processing 262

TRANSMIT command
message processing 349

SEND command 261

SEND command under TEST 337

sequential data set, printing 219

SEQUENTIAL operand
TRANSMIT command 346

server 196

service request 196

session functions
change the streams for 377

information displayed 393

message (MSG) 377

Session Manager (SM) 377

TSO/E 377

Session Manager
commands

CHANGE.CURSOR 375

CHANGE.FUNCTION 376

CHANGE.MODE 379

CHANGE.PFK 372, 379

CHANGE.STREAM 381

CHANGE.TERMINAL 373, 382

CHANGE.WINDOW 373, 383

DEFINE 373

DEFINE.WINDOW 386

DELETE 373

DELETE.WINDOW 389

description 371

END 389

FIND 390

format 372

how to enter 371

PUT 391

QUERY 393

QUERY.STREAMS 381

RESET 396

RESTORE 373, 396

SAVE 397

Session Manager (continued)
commands (continued)

SCROLL 373, 399

SMCOPY 266

SMFIND 269

SMPUT 271

SNAPSHOT 401

summary 373

UNLOCK 402

VS/APL 379

session function, change the streams for 377

shortcut keys 405

SHR operand
ALLOCATE command 24

RECEIVE command 249

SINGLE operand
PRINTDS command 223

SIZE operand
LINK command 167

RUN command 261

RUN subcommand of EDIT 119

SLANGUAGE operand
PROFILE command 238

example 241

SM operand
CHANGE.FUNCTION command 377

SMCOPY command 266

SMFIND command 269

SMPUT command 271

SMS classes 18

SMS data set 17

SMS-managed data set 26

SMSG operand on RUN subcommand of EDIT 117

SNAPSHOT command 401

SNUM operand
LIST subcommand of EDIT 109

PRINTDS command 228

SOURCE operand
RUN command 260

source statements, running 257

SPACE operand
ALLOCATE command 27

DELETE command 78

LISTCAT command 179

RECEIVE command 249

SPIN operand
FREE command 152

SPREC operand
RUN command 260

SSI operand
LINK command 166

STATUS command 272

STATUS command under TEST 338

STATUS operand
LISTALC command 171

LISTDS command 181

storage administrator, role of 17

storage class for data set 26

storage class, definition of 18

Storage Management Subsystem classes 18

Storage Management Subsystem data set 17

428 z/OS V1R9.0 TSO/E Command Reference

STORCLAS operand
ALLOCATE command 26

RECEIVE command 250

STORE operand
RUN command 260

RUN subcommand of EDIT 119

STREAM operand
SMFIND command 270

stream_name operand
CHANGE.FUNCTION command 377, 378

CHANGE.PFK command 380

CHANGE.STREAM command 381

CHANGE.WINDOW command 385

FIND command 391

PUT command 392

QUERY command 394

SMPUT command 271

SNAPSHOT command 402

STREAMS operand
QUERY command 393

streams, information displayed 393

string operand
CHANGE subcommand of EDIT 89

COPY subcommand of EDIT 95

FIND subcommand of EDIT 103

insert/replace/delete function of EDIT 107

MOVE subcommand of EDIT 111

SUBMIT
command 273

subcommand of EDIT 123

support in batch 273

under TEST 339

SUBSTITUTE operand
CHANGE.PFK command 380

summary of
Session Manager commands 373

TSO/E commands 15

surrogate job submission 273

syntax diagrams 10

SYNTAX operand
HELP command 156

syntax rules for
Session Manager commands 373

TSO/E commands and subcommands 10

SYSABNCD 356

SYSABNRC 356

SYSAREA operand
OUTDES command 206

SYSCMDRC 356

SYSNAMES operand
LISTALC command 172

SYSOUT operand
ALLOCATE command 24

PRINTDS command 225

RECEIVE command 249

TRANSMIT command 346

SYSRC operand
WHEN command 369

system area 206

SYSTEM operand
ALTLIB command 59

system printable area 206

T
table reference character 207, 230

TABSET subcommand of EDIT 126

tag definitions
control section 351

nicknames section 353

TARGET operand
CHANGE.WINDOW command 373, 384

DEFINE.WINDOW command 388

FIND command 391

TEMPORARY operand
CHANGE.CURSOR command 376

TERM operand
LINK command 168

LOADGO command 188

TERMINAL command 277

TERMINAL command under TEST 339

TERMINAL operand
QUERY command 393

TRANSMIT command 343

terminal, information displayed (Session Manager) 393

TEST
commands under TEST

ALLOCATE 289

ATTRIB 300

CANCEL 302

EXEC 309

LINK 313

LISTALC 319

LISTBC 319

LISTCAT 319

LISTDS 322

PROFILE 333

PROTECT 333

RENAME 336

SEND 337

STATUS 338

SUBMIT 339

TERMINAL 339

UNALLOC 339

subcommands
AND 289

AT 296

CALL 300

COPY 302

DELETE 305

DROP 305

END 306

EQUATE 307

FREEMAIN 309

GETMAIN 310

GO 311

HELP 313

LIST 313

list of 287

LISTDCB 319

LISTDEB 321

LISTMAP 323

Index 429

TEST (continued)
subcommands (continued)

LISTPSW 324

LISTTCB 325

LISTVP 327

LISTVSR 327

LOAD 328

OFF 329

OR 331

QUALIFY 334

RUN 336

SETVSR 338

WHERE 339

TEST operand
RUN command 260

TEXT operand
EDIT command 83

SEND command 263

text_string operand
FIND command 391

PUT command 392

SMFIND command 270

SMPUT command 271

TIME command 341

TIMEOUT operand
TERMINAL command 279

TITLE operand
PRINTDS command 229

TMARGIN operand
PRINTDS command 230

TMP initialization in background 239

TODATASET operand
PRINTDS command 230

SMCOPY command 267

TOP subcommand of EDIT 128

TOSTREAM operand
SMCOPY command 267

TP operand
TEST command 284

trace data set 196

TRACE operand
MVSSERV command 196

TRACKS operand
ALLOCATE command 28

RECEIVE command 249

TRAN operand
TERMINAL command 280

TRANSMIT command 342

data encryption function 348

logging function 349

TRC operand
OUTDES command 207

PRINTDS command 230

TRIPLE operand
PRINTDS command 223

TRTCH operand
ALLOCATE command 39, 68

ATTRIB command 39, 68

TRUNCATE operand
PRINTDS command 226

TSO/E command, definition 9

TSO/E Enhanced Connectivity Facility 196

TSO/E Interactive Data Transmission
RECEIVE command 245

TRANSMIT command 342

TSOEXEC command 356

TSOLIB command 357

ACTIVATE operand 358, 359, 361

COND operand 360, 361

DATASET operand 361

DDNAME operand 361

DEACTIVATE operand 358, 359, 361

DISPLAY operand 358, 359, 362

DSNAME operand 361

FILE operand 361

LIBRARY operand 361

QUIET operand 362

RESET operand 358, 359, 362

UNCOND operand 360, 361

U
UCOUNT operand

ALLOCATE command 31

UCS operand
ALLOCATE command 43

OUTDES command 207

PRINTDS command 231

UNALLOC command under TEST 339

unauthorized command, running in unauthorized

environment 356

UNCATALOG operand
ALLOCATE command 35

FREE command 151

UNCOND operand
ALTLIB command 60

TSOLIB command 360, 361

UNIT operand
ALLOCATE command 30

RECEIVE command 248

universal character set name 43, 207, 231

UNLOCK command 399, 402

UNNUM operand
SAVE subcommand of EDIT 121

UNNUM subcommand of EDIT 128

UP subcommand of EDIT 128

UPDATE operand
CHANGE.WINDOW command 373, 385

DEFINE.WINDOW command 388

user data value 207

USER operand
ALTLIB command 59

EDIT—SUBMIT subcommand 124

SEND command 263

SUBMIT command 276

USERCATALOG operand
LISTCAT command 179

USERDATA operand
OUTDES command 207

USERID operand
RECEIVE command 246

using HELP 14

430 z/OS V1R9.0 TSO/E Command Reference

USING operand
ALLOCATE command 33

V
VERIFY operand

ALLOCATE command 42

VERIFY subcommand of EDIT 129

VIEW operand
CHANGE.WINDOW command 373, 385

DEFINE.WINDOW command 388

VLFNOTE command 366

VOLUME operand
ALLOCATE command 25

LISTCAT command 179

RECEIVE command 248

VSAM data sets
TSO/E commands and subcommands 14

VSBASIC
EDIT command 83

RUN command 260

VSEQ operand
ALLOCATE command 31

W
WAIT operand

SEND command 264

WARN operand
TRANSMIT command 347

WHEN command 369

WHERE subcommand of TEST 339

width operand
DEFINE.WINDOW command 386

WINDOW operand
RESTORE command 397

SAVE operand 398

window_name operand
CHANGE.CURSOR command 376

CHANGE.TERMINAL command 383

CHANGE.WINDOW command 384

DEFINE.WINDOW command 386

DELETE.WINDOW command 389

FIND command 391

RESTORE command 397

SAVE command 398

SCROLL command 400

UNLOCK command 403

windows
default 373

deleting 389

information displayed 394

information restored 397

information saved 398

WINDOWS operand
QUERY command 394

WKSPACE operand
LINK command 166

LOADGO command 189

writer name 44

WRITER operand
ALLOCATE command 44

OUTDES command 207

PRINTDS command 231

X
XCAL operand

LINK command 165

XREF operand
LINK command 165

Index 431

432 z/OS V1R9.0 TSO/E Command Reference

Readers’ Comments — We’d Like to Hear from You

z/OS

TSO/E

Command Reference

 Publication No. SA22-7782-09

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7782-09

SA22-7782-09

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SA22-7782-09

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How this document is organized
	Where to find more information
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	Summary of changes
	Chapter 1. TSO/E commands and subcommands
	Using a TSO/E command
	Positional operands
	Keyword operands

	How to read the TSO/E command syntax
	Abbreviating keyword operands
	Comments
	Line continuation
	Delimiters

	Using the HELP command
	Explanations of commands
	Syntax interpretation of HELP information
	Explanations of subcommands

	Using commands for VSAM and Non-VSAM data sets
	TSO/E commands and subcommands
	Summary of TSO/E commands
	ALLOCATE command
	Data sets with SMS
	Allocating non-SMS-managed data sets
	Allocating z/OS UNIX data sets
	ALLOCATE command syntax
	ALLOCATE command operands
	ALLOCATE command return codes
	ALLOCATE command examples

	ALTLIB command
	Search order for libraries
	Using ALTLIB with most applications
	Using ALTLIB with concurrent applications
	Using ALTLIB in ISPF
	Using ALTLIB in the IPCS dialog
	Stacking Application-Level library requests
	ALTLIB command syntax
	ALTLIB command operands
	ALTLIB command return codes
	ALTLIB command examples

	ATTRIB command
	ATTRIB command syntax
	ATTRIB command operands
	ATTRIB command return codes
	ATTRIB command examples

	CALL command
	CALL command in the background
	CALL command syntax
	CALL command operands
	CALL command return codes
	CALL command examples

	CANCEL command
	CANCEL command syntax
	CANCEL command operands
	CANCEL command return codes
	CANCEL command examples

	DELETE command
	DELETE command syntax
	DELETE command operands
	DELETE command return codes
	DELETE command example

	EDIT command
	EDIT command syntax
	EDIT command operands
	EDIT command return codes
	EDIT command examples
	EDIT subcommands (overview)
	EDIT—ALLOCATE subcommand
	EDIT—ATTRIB subcommand
	EDIT—BOTTOM subcommand
	EDIT—CHANGE subcommand
	EDIT—CKPOINT subcommand
	EDIT—COPY subcommand
	EDIT—DELETE subcommand
	EDIT—DOWN subcommand
	EDIT—END subcommand
	EDIT—EXEC subcommand
	EDIT—FIND subcommand
	EDIT—FREE subcommand
	EDIT—HELP subcommand
	EDIT—INPUT subcommand
	EDIT—INSERT subcommand
	EDIT—insert/replace/delete function
	EDIT—LIST subcommand
	EDIT—MOVE subcommand
	EDIT—PROFILE subcommand
	EDIT—RENUM subcommand
	EDIT—RUN subcommand
	EDIT—SAVE subcommand
	EDIT—SCAN subcommand
	EDIT—SEND subcommand
	EDIT—SUBMIT subcommand
	EDIT—TABSET subcommand
	EDIT—TOP subcommand
	EDIT—UNNUM subcommand
	EDIT—UP subcommand
	EDIT—VERIFY subcommand

	END command
	END command syntax
	END command return code

	EXEC command
	Using EXEC as a subcommand
	EXEC command syntax
	EXEC command operands
	Using the explicit form of the EXEC command
	Using the (extended) implicit form of the EXEC command
	Considerations for passing quotation marks
	EXEC command return codes
	EXEC command examples

	EXECUTIL command
	Additional considerations for using EXECUTIL
	EXECUTIL command syntax
	EXECUTIL command operands
	EXECUTIL command return codes
	EXECUTIL command examples

	FREE command
	FREE command syntax
	FREE command operands
	FREE command return codes
	FREE command examples

	HELP command
	Information available through HELP
	HELP command syntax
	HELP command operands
	HELP command return codes
	HELP command examples

	LINK command
	LINK command syntax
	LINK command operands
	LINK command return codes
	LINK command examples

	LISTALC command
	LISTALC command syntax
	LISTALC command operands
	LISTALC command return codes
	LISTALC command examples

	LISTBC command
	LISTBC command syntax
	LISTBC command operands
	LISTBC command return codes
	LISTBC command examples

	LISTCAT command
	LISTCAT command syntax
	LISTCAT command operands
	LISTCAT command return codes

	LISTDS command
	LISTDS command syntax
	LISTDS command operands
	LISTDS command return codes
	LISTDS command examples

	LOADGO command
	LOADGO command syntax
	LOADGO command operands
	LOADGO command return codes
	LOADGO command examples

	LOGOFF command
	LOGOFF command syntax
	LOGOFF command operands
	LOGOFF command examples

	LOGON command
	Full-Screen LOGON versus line mode LOGON
	Full-Screen LOGON processing
	LOGON command syntax
	LOGON command operands
	LOGON command examples

	MVSSERV command
	MVSSERV command syntax
	MVSSERV command operands
	MVSSERV command return codes
	MVSSERV command examples

	OUTDES command
	OUTDES command syntax
	OUTDES command operands
	Coding rules
	OUTDES command return codes
	OUTDES command examples

	OUTPUT command
	OUTPUT command syntax
	OUTPUT command operands
	Output sequence
	Subcommands for the OUTPUT command
	Checkpointed data set
	OUTPUT command return codes
	OUTPUT command examples

	OUTPUT subcommands (overview)
	OUTPUT—CONTINUE subcommand
	OUTPUT—CONTINUE subcommand syntax
	OUTPUT—CONTINUE subcommand operands
	OUTPUT—CONTINUE subcommand examples

	OUTPUT—END subcommand
	OUTPUT—END subcommand syntax

	OUTPUT—HELP subcommand
	OUTPUT—SAVE subcommand
	OUTPUT—SAVE subcommand syntax
	OUTPUT—SAVE subcommand operand
	OUTPUT—SAVE subcommand examples

	PRINTDS command
	Process for the input data set or file
	Output for a data set or file
	PRINTDS command syntax
	PRINTDS command operands
	Default values for PRINTDS
	Mutually exclusive operands on PRINTDS
	PRINTDS command return codes
	PRINTDS command examples

	PROFILE command
	PROFILE command syntax
	PROFILE command operands
	PROFILE language setting notes
	PROFILE foreground/background processing differences
	PROFILE command return codes
	PROFILE command examples

	PROTECT command
	PROTECT command syntax
	PROTECT command operands
	Passwords
	Types of access
	Password data set
	PROTECT command return codes
	PROTECT command examples

	RECEIVE command
	RECEIVE command syntax
	RECEIVE command operands
	RECEIVE command prompt parameters
	RECEIVE command prompt parameter syntax
	RECEIVE command prompt parameters
	RECEIVE command return codes
	Receiving data
	Data set organization
	Receiving PDSE data sets
	Receiving protected data sets
	Receiving enciphered data
	Receiving data sets and messages with security labels
	RECEIVE command examples

	RENAME command
	RENAME command syntax
	RENAME command operands
	RENAME command return codes
	RENAME command examples

	RUN command
	RUN command syntax
	RUN command operands
	Determining compiler type
	RUN command return codes
	RUN command examples

	SEND command
	SEND command syntax
	SEND command operands
	SEND command return codes
	SEND command examples

	SMCOPY command
	SMCOPY command syntax
	SMCOPY command operands
	SMCOPY command return codes
	SMCOPY command examples

	SMFIND command
	SMFIND command syntax
	SMFIND command operands
	SMFIND command return codes
	SMFIND command examples

	SMPUT command
	SMPUT command syntax
	SMPUT command operands
	SMPUT command return codes
	SMPUT command examples

	STATUS command
	STATUS command syntax
	STATUS command operand
	STATUS command return codes

	SUBMIT command
	SUBMIT command syntax
	SUBMIT command operands
	SUBMIT command return codes
	SUBMIT command examples

	TERMINAL command
	TERMINAL command syntax
	TERMINAL command operands
	TERMINAL command return codes
	TERMINAL command examples

	TEST command
	TEST command syntax
	TEST command operands
	TEST command return codes
	TEST command examples

	TEST subcommands (overview)
	TEST—ALLOCATE command
	TEST—AND subcommand
	TEST—AND subcommand syntax
	TEST—AND subcommand operands
	TEST—AND subcommand examples

	Assignment of values function of TEST
	Syntax of values function of TEST
	Operands of values function of TEST
	Examples of values function of TEST

	TEST—AT subcommand
	TEST—AT subcommand syntax
	TEST—AT subcommand operands
	TEST—AT subcommand examples

	TEST—ATTRIB command
	TEST—CALL subcommand
	TEST—CALL subcommand syntax
	TEST—CALL subcommand operands
	TEST—CALL subcommand examples

	TEST—CANCEL command
	TEST—COPY subcommand
	TEST—COPY subcommand syntax
	TEST—COPY subcommand operands
	TEST—COPY subcommand examples

	TEST—DELETE subcommand
	TEST—DELETE subcommand syntax
	TEST—DELETE subcommand operand
	TEST—DELETE subcommand examples

	TEST—DROP subcommand
	TEST—DROP subcommand syntax
	TEST—DROP subcommand operand
	TEST—DROP subcommand examples

	TEST—END subcommand
	TEST—END subcommand syntax

	TEST—EQUATE subcommand
	TEST—EQUATE subcommand syntax
	TEST—EQUATE subcommand operands
	TEST—EQUATE subcommand examples

	TEST—EXEC command
	TEST—FREEMAIN subcommand
	TEST—FREEMAIN subcommand syntax
	TEST—FREEMAIN subcommand operands
	TEST—FREEMAIN subcommand examples

	TEST—GETMAIN subcommand
	TEST—GETMAIN subcommand syntax
	TEST—GETMAIN subcommand sperands
	TEST—GETMAIN subcommand examples

	TEST—GO subcommand
	TEST—GO subcommand syntax
	TEST—GO subcommand operands
	TEST—GO subcommand examples

	TEST—HELP command
	TEST—LINK command
	TEST—LIST subcommand
	TEST—LIST subcommand syntax
	TEST—LIST subcommand operands
	TEST—LIST subcommand examples

	TEST—LISTALC command
	TEST—LISTBC command
	TEST—LISTCAT command
	TEST—LISTDCB subcommand
	TEST—LISTDCB subcommand syntax
	TEST—LISTDCB subcommand operands
	TEST—LISTDCB subcommand examples

	TEST—LISTDEB subcommand
	TEST—LISTDEB subcommand syntax
	TEST—LISTDEB subcommand operands
	TEST—LISTDEB subcommand examples

	TEST—LISTDS command
	TEST—LISTMAP subcommand
	TEST—LISTMAP subcommand syntax
	TEST—LISTMAP subcommand sperands
	TEST—LISTMAP subcommand examples

	TEST—LISTPSW subcommand
	TEST—LISTPSW subcommand syntax
	TEST—LISTPSW subcommand operands
	TEST—LISTPSW subcommand examples

	TEST—LISTTCB subcommand
	TEST—LISTTCB subcommand syntax
	TEST—LISTTCB subcommand operands
	TEST—LISTTCB subcommand examples

	TEST—LISTVP subcommand
	TEST—LISTVP subcommand syntax
	TEST—LISTVP subcommand examples

	TEST—LISTVSR subcommand
	TEST—LISTVSR subcommand syntax
	TEST—LISTVSR subcommand operands
	TEST—LISTVSR subcommand examples

	TEST—LOAD subcommand
	TEST—LOAD subcommand syntax
	TEST—LOAD subcommand operands
	TEST—LOAD subcommand examples

	TEST—OFF subcommand
	TEST—OFF subcommand syntax
	TEST—OFF subcommand operands
	TEST—OFF subcommand examples

	TEST—OR subcommand
	TEST—OR subcommand syntax
	TEST—OR subcommand operands
	TEST—OR subcommand examples

	TEST—PROFILE command
	TEST—PROTECT command
	TEST—QUALIFY subcommand
	TEST—QUALIFY subcommand syntax
	TEST—QUALIFY subcommand operands
	TEST—QUALIFY subcommand examples

	TEST—RENAME command
	TEST—RUN subcommand
	TEST—RUN subcommand syntax
	TEST—RUN subcommand operands
	TEST—RUN subcommand examples

	TEST—SEND command
	TEST—SETVSR subcommand
	TEST—SETVSR subcommand syntax
	TEST—SETVSR subcommand operands
	TEST—SETVSR subcommand examples

	TEST—STATUS command
	TEST—SUBMIT command
	TEST—TERMINAL command
	TEST—UNALLOC command
	TEST—WHERE subcommand
	TEST—WHERE subcommand syntax
	TEST—WHERE subcommand operands
	TEST—WHERE subcommand examples

	TIME command
	TIME command syntax
	TIME command return code

	TRANSMIT command
	TRANSMIT command syntax
	TRANSMIT command operands
	TRANSMIT command return codes
	Transmitting data sets
	Transmitting data sets as messages
	Transmitting messages
	Transmitting enciphered data
	Transmitting data sets and messages with security labels
	Logging function of TRANSMIT and RECEIVE
	NAMES data set function
	Control section tags
	Nicknames section tags
	TRANSMIT command examples

	TSOEXEC command
	TSOEXEC command syntax
	TSOEXEC command operand
	TSOEXEC command return codes
	TSOEXEC command examples

	TSOLIB command
	Search order for load modules
	Further considerations
	Command usage
	Stacking load module and program object library requests
	TSOLIB command syntax
	TSOLIB command operands
	TSOLIB command return codes
	TSOLIB command examples

	VLFNOTE command
	Changing data associated with a partitioned data set
	VLFNOTE command syntax (partitioned data set)
	VLFNOTE command operands (partitioned data set)
	VLFNOTE command examples (partitioned data set)
	Changing non-PDS data
	VLFNOTE command syntax (non-PDS)
	VLFNOTE command operands (non-PDS)
	VLFNOTE command examples (non-PDS)
	VLFNOTE command return codes

	WHEN command
	WHEN command syntax
	WHEN command operands
	WHEN command return code
	WHEN command examples

	Chapter 2. Session Manager commands
	Entering Session Manager commands
	Command format
	Session Manager Command syntax
	Defaults
	Abbreviations
	Session Manager Command summary
	CHANGE.CURSOR command
	CHANGE.CURSOR command syntax
	CHANGE.CURSOR command operands
	CHANGE.CURSOR command return codes
	CHANGE.CURSOR command examples
	CHANGE.FUNCTION command
	CHANGE.MODE command
	CHANGE.PFK command
	CHANGE.STREAM command
	CHANGE.TERMINAL command
	CHANGE.WINDOW command
	DEFINE.WINDOW command
	DELETE.WINDOW command
	END command
	FIND command
	PUT command
	QUERY command
	RESET command
	RESTORE command
	SAVE command
	SCROLL command
	SNAPSHOT command
	UNLOCK command

	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Trademarks

	Bibliography
	TSO/E Publications
	Related Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

